77 research outputs found

    A contribution to breast cancer cell proteomics: detection of new sequences

    Get PDF
    Ductal infiltrating carcinoma (DIC) of the breast is the most common and potentially aggressive form of cancer. Knowledge of proteomic profiles, attained both in vivo and in vitro, is fundamental to acquire as much information as possible on the proteins expressed in these pathologic conditions. We used the breast cancer cell line 8701-BC, established from a primary DIC, with the aim of contributing to the databases on mammary cancer cells, which in turn will be very useful for the identification of differentially expressed proteins in normal and neoplastic cells. Within an analysis window comprising about 1750 discernible spots, we have at present catalogued 84 protein spots. The proteins for which an identity was assigned were identified essentially using gel comparison, N-terminal (Nt) microseqencing and immune detection. Among the protein spots Nt-microsequenced, sixteen corresponded to known proteins, four resulted as modified, relative to matching sequences deposited on databases, and seven were unknown. These modified or novel sequences are thus of potential interest to the knowledge of breast cancer proteomics and its applications

    Proteomic Profiling of Colon Cancer Tissues: Discovery of New Candidate Biomarkers

    Get PDF
    Colon cancer is an aggressive tumor form with a poor prognosis. This study reports a comparative proteomic analysis performed by using two-dimensional differential in-gel electrophoresis (2D-DIGE) between 26 pooled colon cancer surgical tissues and adjacent non-tumoral tissues, to identify potential target proteins correlated with carcinogenesis. The DAVID functional classification tool revealed that most of the differentially regulated proteins, acting both intracellularly and extracellularly, concur across multiple cancer steps. The identified protein classes include proteins involved in cell proliferation, apoptosis, metabolic pathways, oxidative stress, cell motility, Ras signal transduction, and cytoskeleton. Interestingly, networks and pathways analysis showed that the identified proteins could be biologically inter-connected to the tumor-host microenvironment, including innate immune response, platelet and neutrophil degranulation, and hemostasis. Finally, transgelin (TAGL), here identified for the first time with four different protein species, collectively down-regulated in colon cancer tissues, emerged as a top-ranked biomarker for colorectal cancer (CRC). In conclusion, our findings revealed a different proteomic profiling in colon cancer tissues characterized by the deregulation of specific pathways involved in hallmarks of cancer. All of these proteins may represent promising novel colon cancer biomarkers and potential therapeutic targets, if validated in larger cohorts of patients

    Retrospective Proteomic Screening of 100 Breast Cancer Tissues

    Get PDF
    The present investigation has been conducted on one hundred tissue fragments of breast cancer, collected and immediately cryopreserved following the surgical resection. The specimens were selected from patients with invasive ductal carcinoma of the breast, the most frequent and potentially aggressive type of mammary cancer, with the objective to increase the knowledge of breast cancer molecular markers potentially useful for clinical applications. The proteomic screening; by 2D-IPG and mass spectrometry; allowed us to identify two main classes of protein clusters: proteins expressed ubiquitously at high levels in all patients; and proteins expressed sporadically among the same patients. Within the group of ubiquitous proteins, glycolytic enzymes and proteins with anti-apoptotic activity were predominant. Among the sporadic ones, proteins involved in cell motility, molecular chaperones and proteins involved in the detoxification appeared prevalent. The data of the present study indicates that the primary tumor growth is reasonably supported by concurrent events: the inhibition of apoptosis and stimulation of cellular proliferation, and the increased expression of glycolytic enzymes with multiple functions. The second phase of the evolution of the tumor can be prematurely scheduled by the occasional presence of proteins involved in cell motility and in the defenses of the oxidative stress. We suggest that this approach on large-scale 2D-IPG proteomics of breast cancer is currently a valid tool that offers the opportunity to evaluate on the same assay the presence and recurrence of individual proteins, their isoforms and short forms, to be proposed as prognostic indicators and susceptibility to metastasis in patients operated on for invasive ductal carcinoma of the breast

    Differential occurrence of S100A7 in breast cancer tissues: A proteomic-based investigation

    Get PDF
    PURPOSE: The present study reports for the first time a large-scale proteomic screening of the occurrence, subcellular localization and relative quantification of the S100A7 protein among a group of 100 patients, clinically grouped for the diagnosis of infiltrating ductal carcinoma (IDC). EXPERIMENTAL DESIGN: To this purpose, the methods of differential proteomics, Western blotting, and immunohistochemistry were used. RESULTS: The identity of two isoforms of the protein was assessed by mass spectrometry and immunologically confirmed. Moreover, we proved by immunocytochemical applications the exclusive localization of the protein within the neoplastic cells. The correlation of S100A7 expression levels with the collective profile of cancer patients' proteomics predicted functional interactions, distinct for the two isoforms. The S100A7b isoform was significantly correlated with specific protein clusters (calcium binding, signaling and cell motion, heat shock and folding) and intercrossing pathways (antioxidant, metabolic and apoptotic pathways), while the more acidic isoform was correlated with a narrow number of proteins mainly unrelated to the b isoform. CONCLUSIONS AND CLINICAL RELEVANCE: This study is the first proteomic-based report on S100A7 in a large series of IDC patients. The correlation with in silico data may significantly contribute the knowledge of possible pathways for S100A7, providing novel insights into the mechanism of action of this protein. We suggest that each S100A7 isoform is involved in critical phases of the breast cancer growth and progression, probably through interaction with different partner proteins

    Large-scale proteomic identification of S100 proteins in breast cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Attempts to reduce morbidity and mortality in breast cancer is based on efforts to identify novel biomarkers to support prognosis and therapeutic choices. The present study has focussed on S100 proteins as a potentially promising group of markers in cancer development and progression. One reason of interest in this family of proteins is because the majority of the S100 genes are clustered on a region of human chromosome 1q21 that is prone to genomic rearrangements. Moreover, there is increasing evidence that S100 proteins are often up-regulated in many cancers, including breast, and this is frequently associated with tumour progression.</p> <p>Methods</p> <p>Samples of breast cancer tissues were obtained during surgical intervention, according to the bioethical recommendations, and cryo-preserved until used. Tissue extracts were submitted to proteomic preparations for 2D-IPG. Protein identification was performed by N-terminal sequencing and/or peptide mass finger printing.</p> <p>Results</p> <p>The majority of the detected S100 proteins were absent, or present at very low levels, in the non-tumoral tissues adjacent to the primary tumor. This finding strengthens the role of S100 proteins as putative biomarkers. The proteomic screening of 100 cryo-preserved breast cancer tissues showed that some proteins were ubiquitously expressed in almost all patients while others appeared more sporadic. Most, if not all, of the detected S100 members appeared reciprocally correlated. Finally, from the perspective of biomarkers establishment, a promising finding was the observation that patients which developed distant metastases after a three year follow-up showed a general tendency of higher S100 protein expression, compared to the disease-free group.</p> <p>Conclusions</p> <p>This article reports for the first time the comparative proteomic screening of several S100 protein members among a large group of breast cancer patients. The results obtained strongly support the hypothesis that a significant deregulation of multiple S100 protein members is associated with breast cancer progression, and suggest that these proteins might act as potential prognostic factors for patient stratification. We propose that this may offer a significant contribution to the knowledge and clinical applications of the S100 protein family to breast cancer.</p

    Breast tumour cell-induced down-regulation of type I collagen mRNA in fibroblasts

    Get PDF
    This study investigated the modulation of type I collagen gene expression in normal fibroblasts by breast tumour cells. Northern analysis of total RNA extracted from stages I, II and III breast tumour tissue revealed that collagen mRNA levels were elevated in stage I tumours compared to the adjacent normal breast tissues, whereas they were decreased in stages II and III breast tumours. This aberrant collagen gene expression was confirmed by non-radioactive RNA:RNA in situ hybridization analysis of 30 breast carcinomas which localized the production of type I collagen mRNA to the stromal fibroblasts within the vicinity of the tumour cells. In order to determine whether the tumour cells were directly responsible for this altered collagen production by the adjacent fibroblasts, breast tumour cell lines were co-cultured with normal fibroblasts for in vitro assessment of collagen and steady-state collagen RNA levels. Co-culture of tumour cells and normal fibroblasts in the same dish resulted in down-regulation of collagen mRNA and protein. Treatment of the fibroblasts with tumour-cell conditioned medium also resulted in decreased collagen protein levels but the mRNA levels, however, remained unaltered. These results suggested that the tumour cells either secrete a labile ‘factor’, or express a cell surface protein requiring direct contact with the fibroblasts, resulting in down-regulation of collagen gene expression. Modulation of the ECM is a common characteristic of invading tumour cells and usually involves increased production of collagenases by the tumour cells or stromal fibroblasts. This study showed that tumour cells were also able to modulate collagen mRNA production by stromal fibroblasts, which may facilitate tumour cell invasion and metastasis. © 1999 Cancer Research Campaig
    corecore