5 research outputs found

    Tensor network states and geometry

    Full text link
    Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law -- that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.Comment: 18 pages, 18 figure

    Quantum information dynamics in multipartite integrable systems

    No full text
    In a non-equilibrium many-body system, the quantum information dynamics between non-complementary regions is a crucial feature to understand the local relaxation towards statistical ensembles. Unfortunately, its characterization is a formidable task, as non-complementary parts are generally in a mixed state. We show that for integrable systems, this quantum information dynamics can be quantitatively understood within the quasiparticle picture for the entanglement spreading. Precisely, we provide an exact prediction for the time evolution of the logarithmic negativity after a quench. In the space-time scaling limit of long times and large subsystems, the negativity becomes proportional to the R\ue9nyi mutual information with R\ue9nyi index . We provide robust numerical evidence for the validity of our results for free-fermion and free-boson models, but our framework applies to any interacting integrable system

    Advances on tensor network theory: symmetries, fermions, entanglement, and holography

    No full text

    Tensor networks for complex quantum systems

    No full text
    corecore