190 research outputs found

    Miraculous financial engineering or toxic finance? The genesis of the U.S. subprime mortgage loans crisis and its consequences on the global financial markets and real economy

    Get PDF
    In the fall of 2008, the U.S. subprime mortgage loans defaults have turned into Wall Street’s biggest crisis since the Great Depression. As hundreds of billions in mortgage-related investments went bad, banks became suspicious of one another’s potential undisclosed credit losses and preferred to reduce their exposure in the interbank markets, thus causing interbank interest rates and credit default swaps increases, a liquidity shortage problem and a worsened credit crunch condition to consumers and businesses. Massive cash injections into money markets and interest rates reductions have been assured by central banks in an attempt to shore up banks and to restore confidence within the financial system. Even Governments have promoted bail-out deal agreements, protections from bankruptcies, recapitalizations and bank nationalizations in order to rescue banks from disastrous bankruptcies

    Herschel Hi-GAL imaging of massive young stellar objects

    Get PDF
    We used Herschel Hi-GAL (Herschel infrared Galactic Plane survey) data to determine whether massive young stellar objects (MYSOs) are resolved at 70 μm and to study their envelope density distribution. Our analysis of three relatively isolated sources in the l = 30° and 59° Galactic fields show that the objects are partially resolved at 70 μm. The Herschel Hi-GAL survey data have a high scan velocity which makes unresolved and partially resolved sources appear elongated in the 70 μm images. We analysed the two scan directions separately and examine the intensity profile perpendicular to the scan direction. Spherically symmetric radiative transfer models with a power-law density distribution were used to study the circumstellar matter distribution. Single dish submm data were also included to study how different spatial information affects the fitted density distribution. The density distribution which best fits both the 70 μm intensity profile and spectral energy distribution has an average index of ∼0.5. This index is shallower than expected and is probably due to the dust emission from bipolar outflow cavity walls not accounted for in the spherical models. We conclude that 2D axisymmetric models and Herschel images at low scan speeds are needed to better constrain the matter distribution around MYSOs

    Slott-Agape Project

    Full text link
    SLOTT-AGAPE (Systematic Lensing Observation at Toppo Telescope - Andromeda Gravitational Amplification Pixel Lensing Experiment) is a new collaboration project among international partners from England, France, Germany, Italy and Switzerland that intends to perform microlensing observation by using M31 as target. The MACHOs search is made thanks to the pixel lensing technique.Comment: 4 pages, 2 figures, proceeding of XLIII Congresso della Societa' Astronomica Italiana, Napoli, 4-8 Maggio, 199

    The ARIEL Instrument Control Unit design for the M4 Mission Selection Review of the ESA's Cosmic Vision Program

    Get PDF
    The Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission (ARIEL) is one of the three present candidates for the ESA M4 (the fourth medium mission) launch opportunity. The proposed Payload will perform a large unbiased spectroscopic survey from space concerning the nature of exoplanets atmospheres and their interiors to determine the key factors affecting the formation and evolution of planetary systems. ARIEL will observe a large number (>500) of warm and hot transiting gas giants, Neptunes and super-Earths around a wide range of host star types, targeting planets hotter than 600 K to take advantage of their well-mixed atmospheres. It will exploit primary and secondary transits spectroscopy in the 1.2-8 um spectral range and broad-band photometry in the optical and Near IR (NIR). The main instrument of the ARIEL Payload is the IR Spectrometer (AIRS) providing low-resolution spectroscopy in two IR channels: Channel 0 (CH0) for the 1.95-3.90 um band and Channel 1 (CH1) for the 3.90-7.80 um range. It is located at the intermediate focal plane of the telescope and common optical system and it hosts two IR sensors and two cold front-end electronics (CFEE) for detectors readout, a well defined process calibrated for the selected target brightness and driven by the Payload's Instrument Control Unit (ICU).Comment: Experimental Astronomy, Special Issue on ARIEL, (2017

    Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease.

    Get PDF
    The key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Through a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs

    A transcribed enhancer dictates mesendoderm specification in pluripotency.

    Get PDF
    Enhancers and long noncoding RNAs (lncRNAs) are key determinants of lineage specification during development. Here, we evaluate remodeling of the enhancer landscape and modulation of the lncRNA transcriptome during mesendoderm specification. We sort mesendodermal progenitors from differentiating embryonic stem cells (ESCs) according to Eomes expression, and find that enhancer usage is coordinated with mesendoderm-specific expression of key lineage-determining transcription factors. Many of these enhancers are associated with the expression of lncRNAs. Examination of ESC-specific enhancers interacting in three-dimensional space with mesendoderm-specifying transcription factor loci identifies MesEndoderm Transcriptional Enhancer Organizing Region (Meteor). Genetic and epigenetic manipulation of the Meteor enhancer reveal its indispensable role during mesendoderm specification and subsequent cardiogenic differentiation via transcription-independent and -dependent mechanisms. Interestingly, Meteor-deleted ESCs are epigenetically redirected towards neuroectodermal lineages. Loci, topologically associating a transcribed enhancer and its cognate protein coding gene, appear to represent therefore a class of genomic elements controlling developmental competence in pluripotency

    Herschel Observations of a Potential Core Forming Clump: Perseus B1-E

    Get PDF
    We present continuum observations of the Perseus B1-E region from the Herschel Gould Belt Survey. These Herschel data reveal a loose grouping of substructures at 160 - 500 micron not seen in previous submillimetre observations. We measure temperature and column density from these data and select the nine densest and coolest substructures for follow-up spectral line observations with the Green Bank Telescope. We find that the B1-E clump has a mass of ~ 100 solar masses and appears to be gravitationally bound. Furthermore, of the nine substructures examined here, one substructure (B1-E2) appears to be itself bound. The substructures are typically less than a Jeans length from their nearest neighbour and thus, may interact on a timescale of ~ 1 Myr. We propose that B1-E may be forming a first generation of dense cores, which could provide important constraints on the initial conditions of prestellar core formation. Our results suggest that B1-E may be influenced by a strong, localized magnetic field, but further observations are still required.Comment: 14 pages, 8 figures, published in A&A: Minor calibration correctio

    Accretion-related properties of Herbig Ae/Be stars. Comparison with T Tauris

    Full text link
    We look for trends relating the mass accretion rate (Macc) and the stellar ages (t), spectral energy distributions (SEDs), and disk masses (Mdisk) for a sample of 38 HAeBe stars, comparing them to analogous correlations found for classical T Tauri stars. Our goal is to shed light on the timescale and physical processes that drive evolution of intermediate-mass pre-main sequence objects. Macc shows a dissipation timescale \tau = 1.3^{+1.0}_{-0.5} Myr from an exponential law fit, while a power law yields Macc(t) \propto t^{-\eta}, with \eta = 1.8^{+1.4}_{-0.7}. This result is based on our whole HAeBe sample (1-6 Msun), but the accretion rate decline most probably depends on smaller stellar mass bins. The near-IR excess is higher and starts at shorter wavelengths (J and H bands) for the strongest accretors. Active and passive disks are roughly divided by 2 x 10^{-7} Msun/yr. The mid-IR excess and the SED shape from the Meeus et al. classification are not correlated with Macc. We find Macc \propto Mdisk^{1.1 +- 0.3}. Most stars in our sample with signs of inner dust dissipation typically show accretion rates ten times lower and disk masses three times smaller than the remaining objects. The trends relating Macc with the near-IR excess and Mdisk extend those for T Tauri stars, and are consistent with viscous disk models. The differences in the inner gas dissipation timescale, and the relative position of the stars with signs of inner dust clearing in the Macc-Mdisk plane, could be suggesting a slightly faster evolution, and that a different process - such as photoevaporation - plays a more relevant role in dissipating disks in the HAeBe regime compared to T Tauri stars. Our conclusions must consider the mismatch between the disk mass estimates from mm fluxes and the disk mass estimates from accretion, which we also find in HAeBe stars.Comment: 11 pages, 7 figures, 1 appendix. Accepted in A&

    KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth

    Get PDF
    The oncogenic KRAS mutation has a critical role in the initiation of human pancreatic ductal adenocarcinoma (PDAC) since it rewires glutamine metabolism to increase reduced nicotinamide adenine dinucleotide phosphate (NADPH) production, balancing cellular redox homeostasis with macromolecular synthesis1,2. Mitochondrial glutamine-derived aspartate must be transported into the cytosol to generate metabolic precursors for NADPH production2. The mitochondrial transporter responsible for this aspartate efflux has remained elusive. Here, we show that mitochondrial uncoupling protein 2 (UCP2) catalyses this transport and promotes tumour growth. UCP2-silenced KRASmut cell lines display decreased glutaminolysis, lower NADPH/NADP+ and glutathione/glutathione disulfide ratios and higher reactive oxygen species levels compared to wild-type counterparts. UCP2 silencing reduces glutaminolysis also in KRASWT PDAC cells but does not affect their redox homeostasis or proliferation rates. In vitro and in vivo, UCP2 silencing strongly suppresses KRASmut PDAC cell growth. Collectively, these results demonstrate that UCP2 plays a vital role in PDAC, since its aspartate transport activity connects the mitochondrial and cytosolic reactions necessary for KRASmut rewired glutamine metabolism2, and thus it should be considered a key metabolic target for the treatment of this refractory tumour

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty
    corecore