813 research outputs found

    Isotope effect on the E2g phonon and mesoscopic phase separation near the electronic topological transition in Mg1-xAlxB2

    Full text link
    We report the boron isotope effect on the E2g phonon mode by micro-Raman spectroscopy on the ternary Mg1-xAlxB2 system, synthesized with pure isotopes 10B and 11B. The isotope coefficient on the phonon frequency is near 0.5 in the full range decreasing near x = 0. The intraband electron-phonon (e-ph) coupling, for the electrons in the sigma band, has been extracted from the E2g line-width and frequency softening. Tuning the Fermi energy near the electronic topological transition (ETT), where the sigma Fermi surface changes from 2D to 3D topology the E2g mode, shows the known Kohn anomaly on the 2D side of the ETT and a splitting of the E2g phonon frequency into a hard and soft component from x = 0 to x = 0.28. The results suggest a minor role of the intraband phonon mediated pairing in the control of the high critical temperature in Mg1-xAlxB2. The common physical features of diborides with the novel multigap FeAs-based superconductors and cuprates is discussed.Comment: 19 pages, 6 figure

    Gait-related frequency modulation of beta oscillatory activity in the subthalamic nucleus of parkinsonian patients

    Get PDF
    Background: Abnormal beta band activity in the subthalamic nucleus (STN) is known to be exaggerated in patients with Parkinson's disease, and the amplitude of such activity has been associated with akinetic rigid symptoms. New devices for deep brain stimulation (DBS) that operate by adapting the stimulation parameters generally rely on the detection of beta activity amplitude modulations in these patients. Movement-related frequency modulation of beta oscillatory activity has been poorly investigated, despite being an attractive variable for extracting information about basal ganglia activity. Objective: We studied the STN oscillatory activity associated with locomotion and proposed a new approach to extract movement related information from beta band activity. Methods: We recorded bilateral local field potential of the STN in eight parkinsonian patients implanted with DBS electrodes during upright quiet standing and unperturbed walking. Neurophysiological recordings were combined with kinematic measurements and individual molecular brain imaging studies. We then determined the information carried by the STN oscillatory activity about locomotion and we identified task-specific biomarkers. Results: We found a gait-related peak frequency modulation of the beta band of STN recordings of parkinsonian patients. This novel biomarker and the associated power modulations were highly informative to detect the walking state (with respect to standing) in each single patient. Conclusion: Frequency modulation in the human STN represents a fundamental aspect of information processing of locomotion. Our information-driven approach could significantly enrich the spectrum of Parkinson's neural markers, with input signals encoding ongoing tasks execution for an appropriate online tuning of DBS delivery

    Photocatalytic CO 2 Valorization by Using Ti O2 , ZrO2 and Graphitic Based Semiconductors

    Get PDF
    In this century, a broad scientific interest has been devoted to fulfill sustainable industrial processes and climatic change remediation. In this prospective, various green technologies have been studied to valorize CO 2• The aim of this research is the CO 2 reduction in presence of water by using the photocatalytic technology with nanomaterials as the photocatalysts. The present work overviews the main outcomes obtained by using graphitic and oxide based photocatalysts both in gas/solid and liquid/solid batch reactors under simulated solar light. In all gas/solid regime tests the major products detected were methane, carbon monoxide, and acetaldehyde

    Acute kidney injury (Aki) before and after kidney transplantation: Causes, medical approach, and implications for the long-term outcomes

    Get PDF
    Acute kidney injury (AKI) is a common finding in kidney donors and recipients. AKI in kidney donor, which increases the risk of delayed graft function (DGF), may not by itself jeopardize the short-and long-term outcome of transplantation. However, some forms of AKI may induce graft rejection, fibrosis, and eventually graft dysfunction. Therefore, various strategies have been proposed to identify conditions at highest risk of AKI-induced DGF, that can be treated by targeting the donor, the recipient, or even the graft itself with the use of perfusion machines. AKI that occurs early post-transplant after a period of initial recovery of graft function may reflect serious and often occult systemic complications that may require prompt intervention to prevent graft loss. AKI that develops long after transplantation is often related to nephrotoxic drug reactions. In symptomatic patients, AKI is usually associated with various systemic medical complications and could represent a risk of mortality. Electronic systems have been developed to alert transplant physicians that AKI has occurred in a transplant recipient during long-term outpatient follow-up. Herein, we will review most recent understandings of pathophysiology, diagnosis, therapeutic approach, and short-and long-term consequences of AKI occurring in both the donor and in the kidney transplant recipient

    Fatty acid neutral losses observed in tandem mass spectrometry with collision-induced dissociation allows regiochemical assignment of sulfoquinovosyl-diacylglycerols

    Get PDF
    A full characterization of sulfoquinovosyldiacylglycerols (SQDGs) in the lipid extract of spinach leaves has been achieved using liquid chromatography/electrospray ionization-linear quadrupole ion trap mass spectrometry (MS). Low-energy collision-induced dissociation tandem MS (MS/MS) of the deprotonated species [M - H]- was exploited for a detailed study of sulfolipid fragmentation. Losses of neutral fatty acids from the acyl side chains (i.e. [M - H - RCOOH]-) were found to prevail over ketene losses ([M - H - R'CHCO]-) or carboxylates of long-chain fatty acids ([RCOO]-), as expected for gas-phase acidity of SQDG ions. A new concerted mechanism for RCOOH elimination, based on a charge-remote fragmentation, is proposed. The preferential loss of a fatty acids molecule from the sn-1 position (i.e. [M - H - R1COOH]-) of the glycerol backbone, most likely due to kinetic control of the gas-phase fragmentation process, was exploited for the regiochemical assignment of the investigated sulfolipids. As a result, 24 SQDGs were detected and identified in the lipid extract of spinach leaves, their number and variety being unprecedented in the field of plant sulfolipids. Moreover, the prevailing presence of a palmitic acyl chain (16:0) on the glycerol sn-2 position of spinach SQDGs suggests a prokaryotic or chloroplastic path as the main route for their biosynthesis

    Selective oxidation of aromatic alcohols in the presence of C3N4 photocatalysts derived from the polycondensation of melamine, cyanuric and barbituric acids

    Get PDF
    A set of C3N4 samples has been prepared by using melamine, cyanuric acid and barbituric acid as the precursors. The materials were subjected both to physical and chemical characterization and were used as photocatalysts for the selective oxidation of aromatic alcohols in water suspension under UV and visible irradiation. The photoactivity of the materials versus the partial oxidation of four substituted benzyl alcohols was investigated. The type and position of the substituents in the aromatic molecule influenced conversion and selectivity to the corresponding aldehyde. The presence of barbituric and cyanuric acids in the preparation method has changed the graphitic-C3N4 structure, and therefore both the characteristics of the material and the ability of light to activate the surface of the photocatalyst. The most active material prepared in the presence of melamine and cyanuric acid showed a remarkable selectivity towards the aldehyde even under visible irradiation

    Hydrophilic interaction and reversed phase mixed-mode liquid chromatography coupled to high resolution tandem mass spectrometry for polar lipids analysis

    Get PDF
    A hydrophilic interaction liquid chromatography (HILIC) fused-core column (150 Ã— 2.1 mm ID, 2.7 Î¼m particle size) and a short reversed-phase liquid chromatography (RPLC) column (20 mm Ã— 2.1 mm ID, 1.9 Î¼m) were serially coupled to perform mixed-mode chromatography (MMC) on complex mixtures of phospholipids (PL). Mobile phase composition and gradient elution program were, preliminarily, optimized using a mixture of phosphatidylcholines (PC), phosphatidylethanolamines (PE), their corresponding lyso-forms (LPC and LPE), and sphingomyelins (SM). Thus a mixture of PC extracted from soybean was characterized by MMC coupled to electrospray ionization (ESI) high-resolution Fourier-transform mass spectrometry (FTMS) using an orbital trap analyzer. Several previously undiscovered PC, including positional isomers (i.e. 16:0/19:1 and 19:1/16:0) of PC 35:1 and skeletal isomers (i.e. 18:1/18:2 and 18:0/18:3) of PC 36:3 were identified. Therefore, high-resolution MS/MS spectra unveiled the occurrence of isomers for several overall side chain compositions. The proposed MMC-ESI-FTMS/MS approach revealed an unprecedented capability in disclosing complexity of an actual lipid extract, thus representing a very promising approach to lipidomics
    • …
    corecore