72,673 research outputs found

    Triplet-singlet relaxation in semiconductor single and double quantum dots

    Full text link
    We study the triplet-singlet relaxation in two-electron semiconductor quantum dots. Both single dots and vertically coupled double dots are discussed. In our work, the electron-electron Coulomb interaction, which plays an important role in the electronic structure, is included. The spin mixing is caused by spin-orbit coupling which is the key to the triplet-singlet relaxation. We show that the selection rule widely used in the literature is incorrect unless near the crossing/anticrossing point in single quantum dots. The triplet/singlet relaxation in double quantum dots can be markedly changed by varying barrier height, inter-dot distance, external magnetic field and dot size.Comment: 7 pages, 4 figures, PRB in pres

    A novel non-Fermi-liquid state in the iron-pnictide FeCrAs

    Full text link
    We report transport and thermodynamic properties of stoichiometric single crystals of the hexagonal iron-pnictide FeCrAs. The in-plane resistivity shows an unusual "non-metallic" dependence on temperature T, rising continuously with decreasing T from ~ 800 K to below 100 mK. The c-axis resistivity is similar, except for a sharp drop upon entry into an antiferromagnetic state at T_N 125 K. Below 10 K the resistivity follows a non-Fermi-liquid power law, rho(T) = rho_0 - AT^x with x<1, while the specific heat shows Fermi liquid behaviour with a large Sommerfeld coefficient, gamma ~ 30 mJ/mol K^2. The high temperature properties are reminiscent of those of the parent compounds of the new layered iron-pnictide superconductors, however the T -> 0 properties suggest a new class of non-Fermi liquid.Comment: 6 pages, 4 figure

    Tunneling into d-wave superconductors: Effects of interface spin-orbit coupling

    Full text link
    Tunneling conductance of a clean normal metal/d-wave superconductor junction is studied by using the extended Blonder-Tinkham-Klapwijk formalism. We show that the conductance is significantly affected by the interface spin-orbit coupling of the Rashba type, which is inevitably present due to the asymmetry of the junction.Comment: 4 pages, 4 figure

    Superfluid stability in BEC-BCS crossover

    Full text link
    We consider a dilute atomic gas of two species of fermions with unequal concentrations under a Feshbach resonance. We find that the system can have distinct properties due to the unbound fermions. The uniform state is stable only when either (a) beyond a critical coupling strength, where it is a gapless superfluid, or (b) when the coupling strength is sufficiently weak, where it is a normal Fermi gas mixture. Phase transition(s) must therefore occur when the resonance is crossed.Comment: 4 pages, 4 figure

    Density of States, Entropy, and the Superconducting Pomeranchuk Effect in Pauli-Limited Al Films

    Full text link
    We present low temperature tunneling density of states measurements of Pauli-limited Al films in which the Zeeman and orbital contributions to the critical field are comparable. We show that films in the thickness range of 6-7 nm exhibit a reentrant parallel critical field transition which is associated with a high entropy superconducting phase, similar to the high entropy solid phase of 3He responsible for the Pomeranchuk effect. This phase is characterized by an excess of states near the Fermi energy so long as the parallel critical field transition remains second order. Theoretical fits to the zero bias tunneling conductance are in good agreement with the data well below the transition but theory deviates significantly near the transition. The discrepancy is a consequence of the emergence of e-e interaction correlations as one enters the normal state.Comment: 9 pages, 5 figures; to be published in Phys. Rev.

    Splitting of Landau levels of a 2D electron due to electron-phonon interactions

    Full text link
    We show that in a very strong magnetic field BB electron-phonon interaction gives rise to a splitting of Landau levels of a 2D electron into a series of infinitely degenerate sublevels. We provide both qualitative and quantitative description of this phenomenon. The cases of interaction with acoustic and polar optical phonons are considered. The energy distance between nearest sublevels in both cases tends to zero as B−1/2B^{-1/2} at large BB.Comment: 4 pages, LaTe

    Breached pairing superfluidity: Possible realization in QCD

    Full text link
    We propose a wide universality class of gapless superfluids, and analyze a limit that might be realized in quark matter at intermediate densities. In the breached pairing color superconducting phase heavy ss-quarks, with a small Fermi surface, pair with light uu or dd quarks. The groundstate has a superfluid and a normal Fermi component simultaneously. We expect a second order phase transition, as a function of increasing density, from the breached pairing phase to the conventional color-flavor locked (CFL) phase.Comment: 5 pages, latex, 1 figure; added references; Comment on Ref. [10] change

    Spin diffusion/transport in nn-type GaAs quantum wells

    Full text link
    The spin diffusion/transport in nn-type (001) GaAs quantum well at high temperatures (≥120\ge120 K) is studied by setting up and numerically solving the kinetic spin Bloch equations together with the Poisson equation self-consistently. All the scattering, especially the electron-electron Coulomb scattering, is explicitly included and solved in the theory. This enables us to study the system far away from the equilibrium, such as the hot-electron effect induced by the external electric field parallel to the quantum well. We find that the spin polarization/coherence oscillates along the transport direction even when there is no external magnetic field. We show that when the scattering is strong enough, electron spins with different momentums oscillate in the same phase which leads to equal transversal spin injection length and ensemble transversal injection length. It is also shown that the intrinsic scattering is already strong enough for such a phenomena. The oscillation period is almost independent on the external electric field which is in agreement with the latest experiment in bulk system at very low temperature [Europhys. Lett. {\bf 75}, 597 (2006)]. The spin relaxation/dephasing along the diffusion/transport can be well understood by the inhomogeneous broadening, which is caused by the momentum-dependent diffusion and the spin-orbit coupling, and the scattering. The scattering, temperature, quantum well width and external magnetic/electric field dependence of the spin diffusion is studied in detail.Comment: 12 pages, 6 figures, to be published in J Appl. Phy
    • …
    corecore