3,153 research outputs found
Fermion Condensate and Vacuum Current Density Induced by Homogeneous and Inhomogeneous Magnetic Fields in (2+1)-Dimensions
We calculate the condensate and the vacuum current density induced by
external static magnetic fields in (2+1)-dimensions. At the perturbative level,
we consider an exponentially decaying magnetic field along one cartesian
coordinate. Non-perturbatively, we obtain the fermion propagator in the
presence of a uniform magnetic field by solving the Schwinger-Dyson equation in
the rainbow-ladder approximation. In the large flux limit, we observe that both
these quantities, either perturbative (inhomogeneous) and non-perturbative
(homogeneous), are proportional to the external field, in agreement with early
expectations.Comment: 8 pages, 2 figures. Accepted for publication in Phys. Rev.
Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants
We present two new adaptive quadrature routines. Both routines differ from
previously published algorithms in many aspects, most significantly in how they
represent the integrand, how they treat non-numerical values of the integrand,
how they deal with improper divergent integrals and how they estimate the
integration error. The main focus of these improvements is to increase the
reliability of the algorithms without significantly impacting their efficiency.
Both algorithms are implemented in Matlab and tested using both the "families"
suggested by Lyness and Kaganove and the battery test used by Gander and
Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases
less efficient, than other commonly-used adaptive integrators.Comment: 32 pages, submitted to ACM Transactions on Mathematical Softwar
Phase transitions in spin-orbital coupled model for pyroxene titanium oxides
We study the competing phases and the phase transition phenomena in an
effective spin-orbital coupled model derived for pyroxene titanium oxides
ATiSi2O6 (A=Na, Li). Using the mean-field-type analysis and the numerical
quantum transfer matrix method, we show that the model exhibits two different
ordered states, the spin-dimer and orbital-ferro state and the spin-ferro and
orbital-antiferro state. The transition between two phases is driven by the
relative strength of the Hund's-rule coupling to the onsite Coulomb repulsion
and/or by the external magnetic field. The ground-state phase diagram is
determined. There is a keen competition between orbital and spin degrees of
freedom in the multicritical regime, which causes large fluctuations and
significantly affects finite-temperature properties in the paramagnetic phase.Comment: 4 pages, 6 figures, proceedings submitted to SPQS200
Planning Approaches to Constraint-Aware Navigation in Dynamic Environments
Path planning is a fundamental problem in many areas, ranging from robotics and artificial intelligence to computer graphics and animation. Although there is extensive literature for computing optimal, collision-free paths, there is relatively little work that explores the satisfaction of spatial constraints between objects and agents at the global navigation layer. This paper presents a planning framework that satisfies multiple spatial constraints imposed on the path. The type of constraints specified can include staying behind a building, walking along walls, or avoiding the line of sight of patrolling agents. We introduce two hybrid environment representations that balance computational efficiency and search space density to provide a minimal, yet sufficient, discretization of the search graph for constraint-aware navigation. An extended anytime dynamic planner is used to compute constraint-aware paths, while efficiently repairing solutions to account for varying dynamic constraints or an updating world model. We demonstrate the benefits of our method on challenging navigation problems in complex environments for dynamic agents using combinations of hard and soft, attracting and repelling constraints, defined by both static obstacles and moving obstacles
"Cold Melting" of Invar Alloys
An anomalously strong volume magnetostriction in Invars may lead to a
situation when at low temperatures the dislocation free energy becomes negative
and a multiple generation of dislocations becomes possible. This generation
induces a first order phase transition from the FCC crystalline to an amorphous
state, and may be called "cold melting". The possibility of the cold melting in
Invars is connected with the fact that the exchange energy contribution into
the dislocation self energy in Invars is strongly enhanced, as compared to
conventional ferromagnetics, due to anomalously strong volume magnetostriction.
The possible candidate, where this effect can be observed, is a FePt disordered
Invar alloy in which the volume magnetostriction is especially large
Orbital and spin interplay in spin-gap formation in pyroxene titanium oxides ATiSi2O6 (A=Na, Li)
Interplay between orbital and spin degrees of freedom is theoretically
studied for the phase transition to the spin-singlet state with lattice
dimerization in pyroxene titanium oxides ATiSi2O6 (A=Na, Li). For the quasi
one-dimensional spin-1/2 systems, we derive an effective spin-orbital-lattice
coupled model in the strong correlation limit with explicitly taking account of
the t_2g orbital degeneracy, and investigate the model by numerical simulation
as well as the mean-field analysis. We find a nontrivial feedback effect
between orbital and spin degrees of freedom; as temperature decreases,
development of antiferromagnetic spin correlations changes the sign of orbital
correlations from antiferro to ferro type, and finally the ferro-type orbital
correlations induce the dimerization and the spin-singlet formation. As a
result of this interplay, the system undergoes a finite-temperature transition
to the spin-dimer and orbital-ferro ordered phase concomitant with the
Jahn-Teller lattice distortion. The numerical results for the magnetic
susceptibility show a deviation from the Curie-Weiss behavior, and well
reproduce the experimental data. The results reveal that the Jahn-Teller energy
scale is considerably small and the orbital and spin exchange interactions play
a decisive role in the pyroxene titanium oxides.Comment: 13 pages, 9 figures; final version. Text, Fig.1, and references are
revised. To appear in Phys. Rev.
- …