22 research outputs found
Soil microbial diversity and related soil functioning in urban parks
International audienceThe main thrust of this work was to improve the knowledge conerning soil biodiversity and related ecosystem services in soils from urban parks in several cities of the Région Centre, France. In this work, the pedological, geochemical and microbiological characteritics of surface soil were investigated in order to make an inventory of soil fertility in several urban parks of the major cities of the région Centre, France. The effects of agricultural practices on biomass, community structure and activity of micro-organisms were investigated in these soils in parallel with the determination of various pedo-physical and chemical parameters
Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells
The mechanisms by which sex differences in the mammalian brain arise are poorly understood, but are influenced by a combination of underlying genetic differences and gonadal hormone exposure. Using a mouse embryonic neural stem cell (eNSC) model to understand early events contributing to sexually dimorphic brain development, we identified novel interactions between chromosomal sex and hormonal exposure that are instrumental to early brain sex differences. RNA-sequencing identified 103 transcripts that were differentially expressed between XX and XY eNSCs at baseline (FDRâ=â0.10). Treatment with testosterone-propionate (TP) reveals sex-specific gene expression changes, causing 2854 and 792 transcripts to become differentially expressed on XX and XY genetic backgrounds respectively. Within the TP responsive transcripts, there was enrichment for genes which function as epigenetic regulators that affect both histone modifications and DNA methylation patterning. We observed that TP caused a global decrease in 5-methylcytosine abundance in both sexes, a transmissible effect that was maintained in cellular progeny. Additionally, we determined that TP was associated with residue-specific alterations in acetylation of histone tails. These findings highlight an unknown component of androgen action on cells within the developmental CNS, and contribute to a novel mechanism of action by which early hormonal organization is initiated and maintained
Transient release of Ni, Mn and Fe from mixed metal sulphides under oxidising and reducing conditions
International audienceThe potential release of metals from anoxic sediments exposed to oxygen was investigated by using a synthetic preparation of metal sulphides dominated by solid phase FeS. The technique of DGT (diffusive gradients in thin-films) was used to measure sulphide and Fe, Mn and Ni in the anoxic metal-sulphide slurry, which had a pH of 6.4. Speciation calculations based on these data showed there was moderate supersaturation with respect to amorphous FeS in the solution phase. Measurements made using DGT with a range of diffusion layer thicknesses showed that when Fe, Mn and Ni are removed from solution there is fairly rapid (minutes) release from the solid phase, that is reasonably well sustained. This presumed desorptive release will be responsible for elevated concentrations of some metals in solution when sediments are resuspended. Oxidation of the slurry by bubbling with air rapidly (hours) removed Fe, Mn and Ni from the pore water solution. While Fe concentrations in solution remained low after the removal, Mn and Ni were transiently released. These results were consistent with initial rapid oxidation of Fe(II) to oxyhydroxides, which remove Mn(II) and Ni by adsorption. The slower oxidation of FeS then releases Mn and Ni, but these too are eventually removed by adsorption to iron oxyhydroxides. These data suggest that oxidation of metal sulphides will contribute to the release of metals from sediment disturbed by dredging or remedial aeration, but it is likely to be short lived, with complete removal within a day