4,563 research outputs found
Inhomogeneous cosmologies with Q-matter and varying
Starting from the inhomogeneous shear--free Nariai metric we show, by solving
the Einstein--Klein--Gordon field equations, how a self--interacting scalar
field plus a material fluid, a variable cosmological term and a heat flux can
drive the universe to its currently observed state of homogeneous accelerated
expansion. A quintessence scenario where power-law inflation takes place for a
string-motivated potential in the late--time dominated field regime is
proposed.Comment: 11 pages, Revtex. To be published in Physical Review
The role of mathematical modeling in VOC analysis using isoprene as a prototypic example
Isoprene is one of the most abundant endogenous volatile organic compounds
(VOCs) contained in human breath and is considered to be a potentially useful
biomarker for diagnostic and monitoring purposes. However, neither the exact
biochemical origin of isoprene nor its physiological role are understood in
sufficient depth, thus hindering the validation of breath isoprene tests in
clinical routine.
Exhaled isoprene concentrations are reported to change under different
clinical and physiological conditions, especially in response to enhanced
cardiovascular and respiratory activity. Investigating isoprene exhalation
kinetics under dynamical exercise helps to gather the relevant experimental
information for understanding the gas exchange phenomena associated with this
important VOC.
A first model for isoprene in exhaled breath has been developed by our
research group. In the present paper, we aim at giving a concise overview of
this model and describe its role in providing supportive evidence for a
peripheral (extrahepatic) source of isoprene. In this sense, the results
presented here may enable a new perspective on the biochemical processes
governing isoprene formation in the human body.Comment: 17 page
Bianchi Type I Cosmology in Generalized Saez-Ballester Theory via Noether Gauge Symmetry
In this paper, we investigate the generalized Saez-Ballester scalar-tensor
theory of gravity via Noether gauge symmetry (NGS) in the background of Bianchi
type I cosmological spacetime. We start with the Lagrangian of our model and
calculate its gauge symmetries and corresponding invariant quantities. We
obtain the potential function for the scalar field in the exponential form. For
all the symmetries obtained, we determine the gauge functions corresponding to
each gauge symmmetry which include constant and dynamic gauge. We discuss
cosmological implications of our model and show that it is compatible with the
observational data.Comment: 13 pages, 2 figures, accepted for publication in 'European Physical
Journal C
Interacting entropy-corrected holographic dark energy with apparent horizon as an infrared cutoff
In this work we consider the entropy-corrected version of interacting
holographic dark energy (HDE), in the non-flat universe enclosed by apparent
horizon. Two corrections of entropy so-called logarithmic 'LEC' and power-law
'PLEC' in HDE model with apparent horizon as an IR-cutoff are studied. The
ratio of dark matter to dark energy densities , equation of state parameter
and deceleration parameter are obtained. We show that the cosmic
coincidence is satisfied for both interacting models. By studying the effect of
interaction in EoS parameter, we see that the phantom divide may be crossed and
also find that the interacting models can drive an acceleration expansion at
the present and future, while in non-interacting case, this expansion can
happen only at the early time. The graphs of deceleration parameter for
interacting models, show that the present acceleration expansion is preceded by
a sufficiently long period deceleration at past. Moreover, the thermodynamical
interpretation of interaction between LECHDE and dark matter is described. We
obtain a relation between the interaction term of dark components and thermal
fluctuation in a non-flat universe, bounded by the apparent horizon. In
limiting case, for ordinary HDE, the relation of interaction term versus
thermal fluctuation is also calculated.Comment: 20 pages, 8 figures, figures changed, some Ref. is added, changed
some sentences, accepted by General relativity and gravitation (GERG
Martian Atmospheric Temperature and Density Profiles During the First Year of NOMAD/TGO Solar Occultation Measurements
We present vertical profiles of temperature and density from solar occultation (SO) observations by the “Nadir and Occultation for Mars Discovery” (NOMAD) spectrometer on board the Trace Gas Orbiter during its first operational year, which covered the second half of Mars Year 34. We used calibrated transmittance spectra in 380 scans, and apply an in-house pre-processing to clean data systematics. Temperature and CO2 profiles up to about 90 km, with consistent hydrostatic adjustment, are obtained, after adapting an Earth-tested retrieval scheme to Mars conditions. Both pre-processing and retrieval are discussed to illustrate their performance and robustness. Our results reveal the large impact of the MY34 Global Dust Storm (GDS), which warmed the atmosphere at all altitudes. The large GDS aerosols opacity limited the sounding of tropospheric layers. The retrieved temperatures agree well with global climate models (GCM) at tropospheric altitudes, but NOMAD mesospheric temperatures are wavier and globally colder by 10 K in the perihelion season, particularly during the GDS and its decay phase. We observe a warm layer around 80 km during the Southern Spring, especially in the Northern Hemisphere morning terminator, associated to large thermal tides, significantly stronger than in the GCM. Cold mesospheric pockets, close to CO2 condensation temperatures, are more frequently observed than in the GCM. NOMAD CO2 densities show oscillations upon a seasonal trend that track well the latitudinal variations expected. Results uncertainties and suggestions to improve future data re-analysis are briefly discussed
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
- …