46 research outputs found
Variables affecting the probability of complete fusion of the medial clavicular epiphysis
In this study, we have combined data on clavicle fusion from different studies and applied a binomial logistic regression analysis. As such, we aimed to assess whether or not variables such as sex, socioeconomic status, and ethnicity influence the probability of having mature, i.e., completely fused clavicles at a given age. We further explored whether the method of clavicle examination, i.e., diagnosis from either a dry bone specimen, an examination of X-rays, or an examination of computed tomography scans, affects the probability of being diagnosed with mature clavicles. It appeared that only ethnicity did not significantly affect this probability. Finally, we illustrated how the logit model may be used to predict the probability of being diagnosed with mature clavicles
Recommended from our members
An assessment of the impact of herb-drug combinations used by cancer patients
Background
Herb/Dietary Supplements (HDS) are the most popular Complementary and Alternative Medicine (CAM) modality used by cancer patients and the only type which involves the ingestion of substances which may interfere with the efficacy and safety of conventional medicines. This study aimed to assess the level of use of HDS in cancer patients undergoing treatment in the UK, and their perceptions of their effects, using 127 case histories of patients who were taking HDS. Previous studies have evaluated the risks of interactions between HDS and conventional drugs on the basis on numbers of patient using HDSs, so our study aimed to further this exploration by examining the actual drug combinations taken by individual patients and their potential safety.
Method
Three hundred seventy-five cancer patients attending oncology departments and centres of palliative care at the Oxford University Hospitals Trust (OUH), Duchess of Kent House, Sobell House, and Nettlebed Hospice participated in a self-administered questionnaire survey about their HDS use with their prescribed medicines. The classification system of Stockley’s Herbal Medicine’s Interactions was adopted to assess the potential risk of herb-drug interactions for these patients.
Results
127/375 (34 %; 95 % CI 29, 39) consumed HDS, amounting to 101 different products. Most combinations were assessed as ‘no interaction’, 22 combinations were categorised as ‘doubt about outcomes of use’, 6 combinations as ‘Potentially hazardous outcome’, one combination as an interaction with ‘Significant hazard’, and one combination as an interaction of “Life-threatening outcome”. Most patients did not report any adverse events.
Conclusion
Most of the patients sampled were not exposed to any significant risk of harm from interactions with conventional medicines, but it is not possible as yet to conclude that risks in general are over-estimated. The incidence of HDS use was also less than anticipated, and significantly less than reported in other areas, illustrating the problems when extrapolating results from one region (the UK), in one setting (NHS oncology) in where patterns of supplement use may be very different to those elsewhere
Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential
<p>Abstract</p> <p>Background</p> <p>Chemoprevention, which includes the use of synthetic or natural agents (alone or in combination) to block the development of cancer in human beings, is an extremely promising strategy for cancer prevention. Cinnamon is one of the most widely used herbal medicines with diverse biological activities including anti-tumor activity. In the present study, we have reported the anti-neoplastic activity of cinnamon in cervical cancer cell line, SiHa.</p> <p>Methods</p> <p>The aqueous cinnamon extract (ACE-<it>c</it>) was analyzed for its cinnamaldehyde content by HPTLC analysis. The polyphenol content of ACE-<it>c </it>was measured by Folin-Ciocalteau method. Cytotoxicity analysis was performed by MTT assay. We studied the effect of cinnamon on growth kinetics by performing growth curve, colony formation and soft agar assays. The cells treated with ACE-<it>c </it>were analyzed for wound healing assay as well as for matrix metalloproteinase-2 (MMP-2) expression at mRNA and protein level by RT-PCR and zymography, respectively. Her-2 protein expression was analyzed in the control and ACE-<it>c </it>treated samples by immunoblotting as well as confocal microscopy. Apoptosis studies and calcium signaling assays were analyzed by FACS. Loss of mitochondrial membrane potential (Δψ<sub>m</sub>) in cinnamon treated cells was studied by JC-1 staining and analyzed by confocal microscopy as well as FACS.</p> <p>Results</p> <p>Cinnamon alters the growth kinetics of SiHa cells in a dose-dependent manner. Cells treated with ACE-<it>c </it>exhibited reduced number of colonies compared to the control cells. The treated cells exhibited reduced migration potential that could be explained due to downregulation of MMP-2 expression. Interestingly, the expression of Her-2 oncoprotein was significantly reduced in the presence of ACE-<it>c</it>. Cinnamon extract induced apoptosis in the cervical cancer cells through increase in intracellular calcium signaling as well as loss of mitochondrial membrane potential.</p> <p>Conclusion</p> <p>Cinnamon could be used as a potent chemopreventive drug in cervical cancer.</p
Ectodermal-Neural Cortex 1 Down-Regulates Nrf2 at the Translational Level
The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1), which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1), which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway