2,496 research outputs found
Makna Tradisi Ruwatan Petirtaan Candi Jolotundo Sebagai Sarana Pelestarian Air
Culture is a Indonesia’s treasure. One form of culture is tradition. One Example which belongs to tradition and still exist nowahdays is Ruwatantradition in Petirtaan Jolotundo Temple. The purpose of this study is to describe the history, the process, and the meaning of ruwatantradition. This study uses qualitative research within descriptive approach. The study was located at Petirtaan Jolotundo Temple, precisely on the Slope of Penanggungan Mountain. There are two froms of data,primary and secondary data. Observation, interviews, and documentationis used as data collection techniques. Based on the research can be concluded that ruwatantradition has existed since long ago which is known as a barikansumber. The existence of this tradition is a gratitude for the abundant water resources that can be utilized. Since 2007-2008, this tradition began to be packaged and enlivened so that an annual event was organized, including sumaninggah, grand carnival, release of birds and tree planting, and manunggaling tirta. Ruwatantraditionmeans a reminder of the beginning to the end of life aimed at humans and the environment.The meaning of ruwatanis depends on the trust of each individual, trust is divided into sacred and profane. Kebudayaan merupakan kekayaan yang dimiliki oleh Indonesia. Salah satu bentuk kebudayaan yaitu tradisi. Contoh tradisi yang dilakukan hingga saat ini yaitu tradisi ruwatandi Petirtaan Candi Jolotundo. Tujuan penelitian ini untuk mendeskripsikan sejarah, proses, dan makna tradisi ruwatan. Penelitian ini menggunakan penelitian kualitatif dengan pendekatan deskriptif. Penelitian dilakukan di Petirtaan Candi Jolotundo tepatnya di Lereng Gunung Penanggungan. Data diperoleh dari data primer dan sekunder. Teknik pengumpulan data menggunakan observasi, wawancara, dan dokumentasi. Berdasarkan penelitian dapat disimpulkan bahwa tradisi ruwatansudah ada sejak dulu yang dikenal sebagai barikan sumber. Adanya tradisi ini merupakan rasa terima kasih masyarakat terhadap sumber air yang melimpah sehingga dapat dimanfaatkan. Sejak tahun 2007-2008 tradisi ini mulai dikemas dan disemarakkan sehingga terbentuk susunan acara yang diadakan setiap tahun diantaranya: sumaninggah, kirab agung, pelepasan burung dan penanaman pohon, dan manunggaling tirta. Tradisi ruwatanbermakna pengingat akan awal hingga akhir kehidupan yang ditujukan untuk manusia dan lingkungan. Pemaknaan ruwatanair suci tersebut tergantung kepercayaan masing-masing individu, kepercayaan terbagi atas sakral dan profan
Dicke Coherent Narrowing in Two-Photon and Raman Spectroscopy of Thin Vapour Cells
The principle of coherent Dicke narrowing in a thin vapour cell, in which
sub-Doppler spectral lineshapes are observed under a normal irradiation for a
l/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the
two wave vectors must be normal to the cell, making the two-photon scheme
highly versatile. A comparison is provided between the Dicke narrowing with
copropagating fields, and the residual Doppler-broadening occurring with
counterpropagating geometries. The experimental feasibility is discussed on the
basis of a first observation of a two-photon resonance in a 300 nm-thick Cs
cell. Extension to the Raman situation is finally considered
Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy
The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most
attractive targets for indirect searches of dark matter. In this work, we
reconstruct the dark matter annihilation (J-factor) and decay profiles for the
newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis
of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS), we
find Reticulum II's J-factor to be among the largest of any Milky Way dSph. We
have checked the robustness of this result against several ingredients of the
analysis. Unless it suffers from tidal disruption or significant inflation of
its velocity dispersion from binary stars, Reticulum II may provide a unique
window on dark matter particle properties.Comment: 5 pages, 4 figures. Match the ApJL accepted versio
Improved sensitivity of H.E.S.S.-II through the fifth telescope focus system
The Imaging Atmospheric Cherenkov Telescope (IACT) works by imaging the very
short flash of Cherenkov radiation generated by the cascade of relativistic
charged particles produced when a TeV gamma ray strikes the atmosphere. This
energetic air shower is initiated at an altitude of 10-30 km depending on the
energy and the arrival direction of the primary gamma ray. Whether the best
image of the shower is obtained by focusing the telescope at infinity and
measuring the Cherenkov photon angles or focusing on the central region of the
shower is a not obvious question. This is particularly true for large size IACT
for which the depth of the field is much smaller. We address this issue in
particular with the fifth telescope (CT5) of the High Energy Stereoscopic
System (H.E.S.S.); a 28 m dish large size telescope recently entered in
operation and sensitive to an energy threshold of tens of GeVs. CT5 is equipped
with a focus system, its working principle and the expected effect of focusing
depth on the telescope sensitivity at low energies (50-200 GeV) is discussed.Comment: In Proceedings of the 33rd International Cosmic Ray Conference
(ICRC2013), Rio de Janeiro (Brazil
The effects of discreteness of galactic cosmic rays sources
Most studies of GeV Galactic Cosmic Rays (GCR) nuclei assume a steady
state/continuous distribution for the sources of cosmic rays, but this
distribution is actually discrete in time and in space. The current progress in
our understanding of cosmic ray physics (acceleration, propagation), the
required consistency in explaining several GCRs manifestation (nuclei,
,...) as well as the precision of present and future space missions
(e.g. INTEGRAL, AMS, AGILE, GLAST) point towards the necessity to go beyond
this approximation. A steady state semi-analytical model that describes well
many nuclei data has been developed in the past years based on this
approximation, as well as others. We wish to extend it to a time dependent
version, including discrete sources. As a first step, the validity of several
approximations of the model we use are checked to validate the approach: i) the
effect of the radial variation of the interstellar gas density is inspected and
ii) the effect of a specific modeling for the galactic wind (linear vs
constant) is discussed. In a second step, the approximation of using continuous
sources in space is considered. This is completed by a study of time
discreteness through the time-dependent version of the propagation equation. A
new analytical solution of this equation for instantaneous point-like sources,
including the effect of escape, galactic wind and spallation, is presented.
Application of time and space discretness to definite propagation conditions
and realistic distributions of sources will be presented in a future paper.Comment: final version, 8 figures, accepted in ApJ. A misprint in fig 8 labels
has been correcte
The flexibility of modified-linker MIL-53 materials
The flexibility of eight aluminium hydroxo terephthalates [Al(OH)(BDC–X)]·n(guest) (BDC = 1,4-benzene-dicarboxylate; X = –H, –CH3, –Cl, –Br, –NH2, –NO2, –(OH)2, –CO2H) crystallising in the MIL-53-type structure was investigated upon thermal dehydration of as-made samples, superhydration and methanol adsorption/desorption using in situ powder X-ray diffraction (PXRD). Profile fitting was used to determine lattice parameters as a function of time and/or temperature to describe their structural evolution. It has thus been shown that while methanol vapour adsorption induces an opening of all the modified frameworks, except the –NH2 material, superhydration only leads to open structures for Al-MIL-53–NO2, –Br and –(OH)2. All the MIL-53 solids, except Al-MIL-53–(OH)2 are present in the open structures upon thermal dehydration. In addition to the exploration of the breathing behavior of this MIL-53 series, the issue of disorder in the distribution of the functional groups between the organic linkers was explored. As a typical illustration, density functional theory calculations were carried out on different structures of Al-MIL-53–Cl, in which the distribution of –Cl within two adjacent BDC linkers is varied. The results show that the most energetically stable configuration leads to the best agreement with the experimental PXRD pattern. This observation supports that the distribution of the selected linker substituent in the functionalised solid is governed by energetics and that there is a preference for an ordering of this arrangement
Saturation effects in the sub-Doppler spectroscopy of Cesium vapor confined in an Extremely Thin Cell
Saturation effects affecting absorption and fluorescence spectra of an atomic
vapor confined in an Extremely Thin Cell (cell thickness ) are
investigated experimentally and theoretically. The study is performed on the
line ( of and concentrates on the two
situations and , the most contrasted ones with
respect to the length dependence of the coherent Dicke narrowing. For , the Dicke-narrowed absorption profile simply broadens and
saturates in amplitude when increasing the light intensity, while for , sub-Doppler dips of reduced absorption at line-center appear on the
broad absorption profile. For a fluorescence detection at ,
saturation induces narrow dips, but only for hyperfine components undergoing a
population loss through optical pumping. These experimental results are
interpreted with the help of the various existing models, and are compared with
numerical calculations based upon a two-level modelling that considers both a
closed and an open system.Comment: 11 pages, 12 figure
The rigidity dependence of galactic cosmic-ray fluxes and its connection with the diffusion coefficient
Thanks to tremendous experimental efforts, galactic cosmic-ray fluxes are being measured up to the unprecedented per cent precision level. The logarithmic slope of these fluxes is a crucial quantity that promises us information on the diffusion properties and the primary or secondary nature of the different species. However, these measured slopes are sometimes interpreted in the pure diffusive regime, guiding to misleading conclusions. In this paper, we have studied the propagation of galactic cosmic rays by computing the fluxes of species between H and Fe using the USINE code and considering all the relevant physical processes and an updated set of cross-section data. We show that the slope of the well-studied secondary-to-primary B/C ratio is distinctly different from the diffusion coefficient slope, by an offset of about 0.2 in the rigidity range in which the AMS-02 data reach their best precision (several tens of GV). Furthermore, we have demonstrated that none of the species from H to Fe follows the expectations of the pure-diffusive regime. We argue that these differences arise from propagation processes such as fragmentation, convection, and reacceleration, which cannot be neglected. On this basis, we also provide predictions for the spectral slope of elemental fluxes not yet analysed by the AMS collaboration
- …