18 research outputs found

    Effect of Ca addition on interface formation in Al(Ca)/Al2O3 composites prepared by gas pressure assisted infiltration

    Get PDF
    The aim of the work is to study interface formation between Al2O3 particles and Al(Ca) matrix in dependence of Ca content. Aluminium matrix composites (AMC) subjected to investigation were prepared by gas pressure assisted infiltration of alumina beds with aluminium-calcium alloys. It is shown that alumina particles in the AMC are covered with a monocaldum aluminates layer whose coherence increases with increasing amounts of Ca in the aluminium-calcium alloys. Moreover, Al4Ca intermetallic phases are formed with increasing Ca content and interconnect alumina particles. XRD confirms the presence of both CaAl2O4 and CaAl4O2 ternary phases. However, HRTEM analysis confirmed CaAl2O4 with a rather complex structure containing a high density of stacking faults. It appeared that annealing at 735 degrees C does improve consistency of interface for Al 2 waCa/Al2O3 AMC, but do not affect the thickness of the interface in dependence on annealing time. (C) 2016 Elsevier Ltd. All rights reserved

    Wettability of amorphous and nanocrystalline Fe78B13Si9 substrates by molten Sn and Bi

    Get PDF
    The wettability of amorphous and annealing-induced nanocrystalline Fe78B13Si9 ribbons by molten Sn and Bi at 600 K was measured using an improved sessile drop method. The results demonstrate that the structural relaxation and crystallization in the amorphous substrates do not substantially change the wettability with molten Bi because of their invariable physical interaction, but remarkably deteriorate the wettability and interfacial bonding with molten Sn as a result of changing a chemical interaction to a physical one for the atoms at the interface

    Local ordering model in Fe-Si-B amorphous alloys

    Full text link

    Superferromagnetism in chain-like Fe@SiO 2

    No full text
    One-dimensional (1D) chain-like nanocomposites, created by ensembles of nanoparticles of with diameter ∼ 13 nm, which are composed of an iron core (∼4 nm) and a silica protective layer, were prepared by a self-assembly process. Chain-like Fe@SiO2 ensembles were formed due to strong magnetic dipole–dipole interactions between individual Fe nanoparticles and the subsequent fixation of the Fe particles by the SiO2 layers. X-ray near edge absorption spectra measurements at the Fe K absorption edge confirm that the presence of a silica layer prevents the oxidation of the magnetic Fe core. Strong magnetic interactions between Fe cores lead to long-range ordering of magnetic moments, and the nanoparticle ensembles exhibit superferromagnetic characteristics demonstrated by a broad blocking Zero-field cooling (ZFC)/field-cooling distribution, nearly constant temperature dependence of ZFC magnetization, and non-zero coercivity at room temperature. Low room-temperature coercivity and the presence of electrically insulating SiO2 shells surrounding the Fe core make the studied samples suitable candidates for microelectronic applications
    corecore