573 research outputs found
Density-functional theory of positronium and electron bubbles in helium fluids
The density-functional method is applied to excess electrons and positronium atoms in helium fluids. The self-trapping is investigated in a fully self-consistent fashion, and formulas are given for the particle energy and Ps pick-off annihilation rate in quasifree as well as localized states. The numerical results compare well with experimental data. However, the need for a more sophisticated treatment of threshold effects near the onset of bubble formation is indicated.Peer reviewe
Nitrogen deposition does not enhance Sphagnum decomposition
Long-term additions of nitrogen (N) to peatlands have altered bryophyte growth, species dominance, N content in peat and peat water, and often resulted in enhanced Sphagnum decomposition rate. However, these results have mainly been derived from experiments in which N was applied as ammonium nitrate (NH4NO3), neglecting the fact that in polluted areas, wet deposition may be dominated either by NO3- or NH4+. We studied effects of elevated wet deposition of NO3- vs. NH4+ alone (8 or 56 kg N ha(-1) yr(-1) over and above the background of 8 kg N ha(-1) yr(-1) for 5 to 11 years) or combined with phosphorus (P) and potassium (K) on Sphagnum quality for decomposers, mass loss, and associated changes in hummock pore water in an ombrotrophic bog (Whim). Adding N, especially as NH4+, increased N concentration in Sphagnum, but did not enhance mass loss from Sphagnum. Mass loss seemed to depend mainly on moss species and climatic factors. Only high applications of N affected hummock pore water chemistry, which varied considerably over time. Overall, C and N cycling in this N treated bog appeared to be decoupled. We conclude that moss species, seasonal and annual variation in climatic factors, direct negative effects of N (NH4+ toxicity) on Sphagnum production, and indirect effects (increase in pH and changes in plant species dominance under elevated NO3- alone and with PK) drive Sphagnum decomposition and hummock C and N dynamics at Whim. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe
Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation
Hearing loss is a major public health problem, and its treatment with traditional therapy strategies is often unsuccessful due to limited drug access deep in the temporal bone. Multifunctional nanoparticles that are targeted to specified cell populations, biodegradable, traceable in vivo, and equipped with controlled drug/gene release may resolve this problem. We developed lipid core nanocapsules (LNCs) with sizes below 50 nm. The aim of the present study is to evaluate the ability of the LNCs to pass through the round window membrane and reach inner ear targets. FITC was incorporated as a tag for the LNCs and Nile Red was encapsulated inside the oily core to assess the integrity of the LNCs. The capability of LNCs to pass through the round window membrane and the distribution of the LNCs inside the inner ear were evaluated in rats via confocal microscopy in combination with image analysis using ImageJ. After round window membrane administration, LNCs reached the spiral ganglion cells, nerve fibers, and spiral ligament fibrocytes within 30 min. The paracellular pathway was the main approach for LNC penetration of the round window membrane. LNCs can also reach the vestibule, middle ear mucosa, and the adjacent artery. Nuclear localization was detected in the spiral ganglion, though infrequently. These results suggest that LNCs are potential vectors for drug delivery into the spiral ganglion cells, nerve fibers, hair cells, and spiral ligament
Chemical Equilibration and Transport Properties of Hadronic Matter near
We discuss how the inclusion of Hagedorn states near leads to short
chemical equilibration times of proton anti-proton pairs, pairs, and
pairs, which indicates that hadrons do not need to be
"born" into chemical equilibrium in ultrarelativistic heavy ion collisions. We
show that the hadron ratios computed within our model match the experimental
results at RHIC very well. Furthermore, estimates for near
computed within our resonance gas model are comparable to the string theory
viscosity bound . Our model provides a good description of the
recent lattice results for the trace anomaly close to MeV.Comment: 4 pages, 3 figures, to appear in the conference proceedings for Quark
Matter 2009, March 30 - April 4, Knoxville, Tennesse
Thermal expansion in small metal clusters and its impact on the electric polarizability
The thermal expansion coefficients of clusters with and , and
are obtained from {\it ab initio} Born-Oppenheimer LDA molecular dynamics.
Thermal expansion of small metal clusters is considerably larger than that in
the bulk and size-dependent. We demonstrate that the average static electric
dipole polarizability of Na clusters depends linearly on the mean interatomic
distance and only to a minor extent on the detailed ionic configuration when
the overall shape of the electron density is enforced by electronic shell
effects. The polarizability is thus a sensitive indicator for thermal
expansion. We show that taking this effect into account brings theoretical and
experimental polarizabilities into quantitative agreement.Comment: 4 pages, 2 figures, one table. Accepted for publication in Physical
Review Letters. References 10 and 23 update
Influence of culture media on the physical and chemical properties of Ag–TiCN coatings
The aim of this study was to verify the possible physical and chemical changes that may occur on the surface of Ag–TiCN coatings after exposure to the culture media used in microbiological and cytotoxic assays, respectively tryptic soy broth (TSB) and Dulbecco's modified eagle's medium (DMEM). After sample immersion for 24 h in the media, analyses were performed by glow discharge optical emission spectroscopy discharge radiation (GDOES), Rutherford backscattering spectroscopy (RBS) and x-ray photoelectron spectroscopy (XPS). The results of GDOES profile, RBS and XPS spectra, of samples immersed in TSB, demonstrated the formation of a thin layer of carbon, oxygen and nitrogen that could be due to the presence of proteins in TSB. After 24 h of immersion in DMEM, the results showed the formation of a thin layer of calcium phosphates on the surface, since the coatings displayed a highly oxidized surface in which calcium and phosphorus were detected. All these results suggested that the formation of a layer on the coating surface prevented the release of silver ions in concentrations that allow antibacterial activity.IC acknowledges the financial support of FCT-Fundacao para a Ciencia e a Tecnologia through the grant SFRH/BD/67022/2009. REG acknowledges support from Ramon y Cajal programme (RyC2007-0026). This research is sponsored by FEDER funds through the program COMPETE-Programa Operacional Factores de Competitividade and by national funds through FCT-Fundacao para a Ciencia e a Tecnologia in the framework of the Strategic Projects PESTC/FIS/UI607/2011, PEST-C/EME/UI0285/2011, PTDC/CTM/102853/2008.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project 'BioHealth-Biotechnology and Bioengineering approaches to improve health quality', Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. The authors also thank the project 'Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB', Ref. FCOMP-01-0124-FEDER-027462
Designing multiplayer games to facilitate emergent social behaviours online
This paper discusses an exploratory case study of the design of games that facilitate spontaneous social interaction and group behaviours among distributed individuals, based largely on symbolic presence 'state' changes. We present the principles guiding the design of our game environment: presence as a symbolic phenomenon, the importance of good visualization and the potential for spontaneous self-organization among groups of people. Our game environment, comprising a family of multiplayer 'bumper-car' style games, is described, followed by a discussion of lessons learned from observing users of the environment. Finally, we reconsider and extend our design principles in light of our observations
Probe the QCD phase diagram with \phi-mesons in high energy nuclear collisions
High-energy nuclear collision provide a unique tool to study the strongly
interacting medium. Recent results from the Relativistic Heavy Ion Collider
(RHIC) on \phi-meson production has revealed the formation of a dense partonic
medium. The medium constituents are found to exhibit collective behaviour
initiated due to partonic interactions in the medium. We present a brief review
of the recent results on \phi production in heavy-ion collisions at RHIC. One
crucial question is where, in the phase diagram, does the transition happen for
the matter changing from hadronic to partonic degrees of freedom. We discuss
how \phi-meson elliptic flow in heavy-ion collisions can be used for the search
of the QCD phase boundary.Comment: Plenary talk at Strange Quark Matter 2008, Beijing China, 6-10
October 2008. To appear in proceedings of SQM200
- …