64 research outputs found

    THE SENSITIVITY TO NEW PHYSICS OF A LEP SCAN IN 1995

    Get PDF
    We study the implications of possible off-peak measurements in the 1995 LEP run, in regard to probing physics beyond the Standard Model. To do so, we determine the accuracy with which various nonstandard couplings can be expected to be measured in the three different scan scenarios recently discussed by Clarke and Wyatt. We find that each scan scenario allows greater sensitivity to a different set of new physics couplings. Oblique parameters are best measured with the longest scan, while nonstandard fermion couplings to the Z tend to be better constrained (albeit only marginally) if all of the 1995 LEP measurements are taken on the Z peak.Comment: Plain TeX, 9 pages, no figures. We have streamlined our presentation by omitting observables of our Class B. All else is completely unchanged

    A Higgs or Not a Higgs? What to Do if You Discover a New Scalar Particle

    Get PDF
    We show how to systematically analyze what may be inferred should a new scalar particle be discovered in collider experiments. Our approach is systematic in the sense that we perform the analysis in a manner which minimizes apriori theoretical assumptions as to the nature of the scalar particle. For instance, we do not immediately make the common assumption that a new scalar particle is a Higgs boson, and so must interact with a strength proportional to the mass of the particles with which it couples. We show how to compare different observables, and so to develop a decision tree from which the nature of the new particle may be discerned. We define several categories of models, which summarize the kinds of distinctions which the first experiments can make.Comment: 66 pages, 14 figures, version to appear in International Journal of Mod. Phys.

    Electroweak Radiative Corrections To Polarized M{\o}ller Scattering Asymmetries

    Get PDF
    One loop electroweak radiative corrections to left-right parity violating M{\o}ller scattering (eeeee^-e^-\to e^-e^-) asymmetries are presented. They reduce the standard model (tree level) prediction by 40±3\pm 3 \% where the main shift and uncertainty stem from hadronic vacuum polarization loops. A similar reduction also occurs for the electron-electron atomic parity violating interaction. That effect can be attributed to an increase of sin2θW(q2)\sin^2\theta_W(q^2) by 3%3\% in running from q2=mZ2q^2=m_Z^2 to 0. The sensitivity of the asymmetry to ``new physics'' is also discussed.Comment: 14 pages, Revtex, postscript file including figures is available at ftp://ttpux2.physik.uni-karlsruhe.de/ttp95-14/ttp95-14.ps or via WWW at http://ttpux2.physik.uni-karlsruhe.de/cgi-bin/preprints/ (129.13.102.139

    EWPD Constraints on Flavor Symmetric Vector Fields

    Get PDF
    Electroweak precision data constraints on flavor symmetric vector fields are determined. The flavor multiplets of spin one that we examine are the complete set of fields that couple to quark bi-linears at tree level while not initially breaking the quark global flavor symmetry group. Flavor safe vector masses proximate to, and in some cases below, the electroweak symmetry breaking scale are found to be allowed. Many of these fields provide a flavor safe mechanism to explain the t tbar forward backward anomaly, and can simultaneously significantly raise the allowed values of the Standard Model Higgs mass consistent with electroweak precision data.Comment: Matches version published in JHE

    Constraints on Masses of Charged PGBs in Technicolor Model from Decay bsγ b \to s \gamma

    Full text link
    In this paper we calculate the contributions to the branching ratio of BXsγB\to X_s \gamma from the charged Pseudo-Goldstone bosons appeared in one generation Technicolor model. The current CLEOCLEO experimental results can eliminate large part of the parameter space in the m(P±)m(P8±)m(P^\pm) - m(P_8^\pm) plane, and specifically, one can put a strong lower bound on the masses of color octet charged PGBs P8±P_8^\pm: m(P8±)>400  GeVm(P^{\pm}_8) > 400\;GeV at 90%C.L90\%C.L for free m(P±)m(P^{\pm}).Comment: 9 pages, 3 figures(uuencoded), Minor changes(Type error), to appear in Phys. Rev.

    Higgsless Electroweak Symmetry Breaking in Warped Backgrounds: Constraints and Signatures

    Full text link
    We examine the phenomenology of a warped 5-dimensional model based on SU(2)L×_L \times SU(2)R×_R \times U(1)BL_{B-L} model which implements electroweak symmetry breaking through boundary conditions, without the presence of a Higgs boson. We use precision electroweak data to constrain the general parameter space of this model. Our analysis includes independent LL and RR gauge couplings, radiatively induced UV boundary gauge kinetic terms, and all higher order corrections from the curvature of the 5-d space. We show that this setup can be brought into good agreement with the precision electroweak data for typical values of the parameters. However, we find that the entire range of model parameters leads to violation of perturbative unitarity in gauge boson scattering and hence this model is not a reliable perturbative framework. Assuming that unitarity can be restored in a modified version of this scenario, we consider the collider signatures. It is found that new spin-1 states will be observed at the LHC and measurement of their properties would identify this model. However, the spin-2 graviton Kaluza-Klein resonances, which are a hallmark of the Randall-Sundrum model, are too weakly coupled to be detected.Comment: More detailed analysis, added references, 43 pages, 15 figures, LaTe
    corecore