427 research outputs found

    A Single-Photon-compatible Telecom-C-Band Quantum Memory in a Hot Atomic Gas

    Full text link
    The efficient storage and on-demand retrieval of quantum optical states that are compatible with the telecommunications C-band is a requirement for future terrestrial-based quantum optical networking. Spectrum in the C-band minimises optical fiber-propagation losses, and broad optical bandwidth facilitates high-speed networking protocols. Here we report on a telecommunication wavelength and bandwidth compatible quantum memory. Using the Off-Resonant Cascaded Absorption protocol in hot 87^{87}Rb vapour, we demonstrate a total memory efficiency of 20.90(1) %20.90(1)\,\% with a Doppler-limited storage time of 1.10(2) 1.10(2)\,ns. We characterise the memory performance with weak coherent states, demonstrating signal-to-noise ratios greater than unity for mean photon number inputs above 4.5(6)×10−64.5(6)\times10^{-6} per pulse

    Theory of noise suppression in {\Lambda}-type quantum memories by means of a cavity

    Full text link
    Quantum memories, capable of storing single photons or other quantum states of light, to be retrieved on-demand, offer a route to large-scale quantum information processing with light. A promising class of memories is based on far-off-resonant Raman absorption in ensembles of Λ\Lambda-type atoms. However at room temperature these systems exhibit unwanted four-wave mixing, which is prohibitive for applications at the single-photon level. Here we show how this noise can be suppressed by placing the storage medium inside a moderate-finesse optical cavity, thereby removing the main roadblock hindering this approach to quantum memory.Comment: 10 pages, 3 figures. This paper provides the theoretical background to our recent experimental demonstration of noise suppression in a cavity-enhanced Raman-type memory ( arXiv:1510.04625 ). See also the related paper arXiv:1511.05448, which describes numerical modelling of an atom-filled cavity. Comments welcom

    High-speed noise-free optical quantum memory

    Full text link
    Quantum networks promise to revolutionise computing, simulation, and communication. Light is the ideal information carrier for quantum networks, as its properties are not degraded by noise in ambient conditions, and it can support large bandwidths enabling fast operations and a large information capacity. Quantum memories, devices that store, manipulate, and release on demand quantum light, have been identified as critical components of photonic quantum networks, because they facilitate scalability. However, any noise introduced by the memory can render the device classical by destroying the quantum character of the light. Here we introduce an intrinsically noise-free memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We consequently demonstrate for the first time successful storage of GHz-bandwidth heralded single photons in a warm atomic vapour with no added noise; confirmed by the unaltered photon statistics upon recall. Our ORCA memory platform meets the stringent noise-requirements for quantum memories whilst offering technical simplicity and high-speed operation, and therefore is immediately applicable to low-latency quantum networks

    Inflammatory pathways in the mechanism of parturition

    Get PDF
    Increasing evidence suggests that parturition is an inflammatory process. In this brief overview, inflammatory events occurring in association with parturition, and the mechanism by which they may contribute to labour and delivery will be discussed. Mention will be made of how this information may be of use in regulating the timing and the onset of parturition

    Optimal Coherent Filtering for Single Noisy Photons

    Get PDF
    We introduce a filter using a noise-free quantum buffer with large optical bandwidth that can both filter temporal-spectral modes, as well as inter-convert them and change their frequency. We show that such quantum buffers optimally filter out temporal-spectral noise; producing identical single-photons from many distinguishable noisy single-photon sources with the minimum required reduction in brightness. We then experimentally demonstrate a noise-free quantum buffer in a warm atomic system that is well matched to quantum dots and can outperform all intensity (incoherent) filtering schemes for increasing indistinguishability.Comment: 5 pages, 4 Figure

    Highly multimode memory in a crystal

    Full text link
    We experimentally demonstrate the storage of 1060 temporal modes onto a thulium-doped crystal using an atomic frequency comb (AFC). The comb covers 0.93 GHz defining the storage bandwidth. As compared to previous AFC preparation methods (pulse sequences i.e. amplitude modulation), we only use frequency modulation to produce the desired optical pumping spectrum. To ensure an accurate spectrally selective optical pumping, the frequency modulated laser is self-locked on the atomic comb. Our approach is general and should be applicable to a wide range of rare-earth doped material in the context of multimode quantum memory

    Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons

    Get PDF
    Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena ( I similar to 3-5 x 10(19) W cm(-2)) produced hard bremsstrahlung photons ( kT similar to 2(9 MeV) via a laser-gas interaction which served to induce ( gamma, p) and ( gamma, n) reactions in Mg, Ti, Zn and Mo isotopes. Several ( gamma, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields
    • …
    corecore