79,015 research outputs found

    Valuing the voluntary sector: rethinking economic analysis

    Get PDF
    The voluntary sector plays an important role in the sports industry, as a provider of sporting opportunities and in the development of sport, from increasing participation through to supporting excellence and elite performance. However, despite this importance, research on its contribution to sport-related economic activity is limited, with information on this sector remaining the weakest part of current economic assessments of the UK sports industry. The research presented in this article examines the economic importance of the voluntary sector, using a case study of Sheffield. It demonstrates that the sports voluntary sector in the city is considerably smaller than was predicted when using national estimates, and that this is largely a consequence of methodological issues relating to previous research. The article suggests that in the light of the findings and the increasing use of sport in urban policy, there is a need to rethink the methodology used to evaluate the economic contribution of the voluntary sector in the future.</p

    Sum rules in the heavy quark limit of QCD

    Full text link
    In the leading order of the heavy quark expansion, we propose a method within the OPE and the trace formalism, that allows to obtain, in a systematic way, Bjorken-like sum rules for the derivatives of the elastic Isgur-Wise function ξ(w)\xi(w) in terms of corresponding Isgur-Wise functions of transitions to excited states. A key element is the consideration of the non-forward amplitude, as introduced by Uraltsev. A simplifying feature of our method is to consider currents aligned along the initial and final four-velocities. As an illustration, we give a very simple derivation of Bjorken and Uraltsev sum rules. On the other hand, we obtain a new class of sum rules that involve the products of IW functions at zero recoil and IW functions at any ww. Special care is given to the needed derivation of the projector on the polarization tensors of particles of arbitrary integer spin. The new sum rules give further information on the slope ρ2=ξ(1)\rho^2 = - \xi '(1) and also on the curvature σ2=ξ(1)\sigma^2 = \xi '' (1), and imply, modulo a very natural assumption, the inequality σ254ρ2\sigma^2 \geq {5\over 4} \rho^2, and therefore the absolute bound σ21516\sigma^2 \geq {15 \over 16}.Comment: 64 pages, Late

    Structural Analysis and Stochastic Modelling Suggest a Mechanism for Calmodulin Trapping by CaMKII

    Get PDF
    Activation of CaMKII by calmodulin and the subsequent maintenance of constitutive activity through autophosphorylation at threonine residue 286 (Thr286) are thought to play a major role in synaptic plasticity. One of the effects of autophosphorylation at Thr286 is to increase the apparent affinity of CaMKII for calmodulin, a phenomenon known as “calmodulin trapping”. It has previously been suggested that two binding sites for calmodulin exist on CaMKII, with high and low affinities, respectively. We built structural models of calmodulin bound to both of these sites. Molecular dynamics simulation showed that while binding of calmodulin to the supposed low-affinity binding site on CaMKII is compatible with closing (and hence, inactivation) of the kinase, and could even favour it, binding to the high-affinity site is not. Stochastic simulations of a biochemical model showed that the existence of two such binding sites, one of them accessible only in the active, open conformation, would be sufficient to explain calmodulin trapping by CaMKII. We can explain the effect of CaMKII autophosphorylation at Thr286 on calmodulin trapping: It stabilises the active state and therefore makes the high-affinity binding site accessible. Crucially, a model with only one binding site where calmodulin binding and CaMKII inactivation are strictly mutually exclusive cannot reproduce calmodulin trapping. One of the predictions of our study is that calmodulin binding in itself is not sufficient for CaMKII activation, although high-affinity binding of calmodulin is

    Relativistic dynamical polarizability of hydrogen-like atoms

    Full text link
    Using the operator representation of the Dirac Coulomb Green function the analytical method in perturbation theory is employed in obtaining solutions of the Dirac equation for a hydrogen-like atom in a time-dependent electric field. The relativistic dynamical polarizability of hydrogen-like atoms is calculated and analysed.Comment: 15 pages, 3 figures (not included, but hard copies are available upon request

    Optimal solution error covariance in highly nonlinear problems of variational data assimilation

    Get PDF
    The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem (see, e.g.[1]) to find the initial condition, boundary conditions or model parameters. The input data contain observation and background errors, hence there is an error in the optimal solution. For mildly nonlinear dynamics, the covariance matrix of the optimal solution error can be approximated by the inverse Hessian of the cost functional of an auxiliary data assimilation problem ([2], [3]). The relationship between the optimal solution error covariance matrix and the Hessian of the auxiliary control problem is discussed for different degrees of validity of the tangent linear hypothesis. For problems with strongly nonlinear dynamics a new statistical method based on computation of a sample of inverse Hessians is suggested. This method relies on the efficient computation of the inverse Hessian by means of iterative methods (Lanczos and quasi-Newton BFGS) with preconditioning. The method allows us to get a sensible approximation of the posterior covariance matrix with a small sample size. Numerical examples are presented for the model governed by Burgers equation with a nonlinear viscous term. The first author acknowledges the funding through the project 09-01-00284 of the Russian Foundation for Basic Research, and the FCP program "Kadry"

    Orexin A in cortical cultures: expression and effect on synaptogenesis during development

    Get PDF
    Orexin-A (OXA) is an excitatory hypothalamic neurotransmitter and ligand for Orexin Receptor-1 (OR1), isolated from a small group of hypothalamic neurons. OXA orchestrates different brain functions, and at the cognitive level some of the effects of insufficiency of OXA are well-known, for example in Parkinson’s disease. It is widely assumed that deteriorated cognitive processes are related to impaired network connectivity. However, little is known about the effects of OXA in network connectivity and synaptogenesis. Therefore, to obtain insight into this problem we designed experiments with two groups of networks of dissociated cortical neurons: one group incubated in a plain medium and another chronically treated with OXA. After one, two, three or four weeks in vitro we applied immunocytochemistry for detection of OXA, OR1 and synaptic marker synaptophysin. Shortly after plating, 91±8% of the neurons cultivated in a plain medium expressed OXA-immunoreactivity, which does normally not occur in vivo indicating that neurons may change their phenotype under non-natural culture conditions to develop synaptically coupled networks. The fraction of orexinergic neurons decreased to 33±21% after 4 weeks in vitro. OXA expression was highest in the first week of network formation, the period of maximum synaptogenesis, and then decreased and stabilized in the weeks thereafter. Our hypothesis that OXA plays a role in the network development as a synaptogenic factor was supported by higher levels, earlier onset, and sustained increase of synaptophysin-expression in experiments with chronic OXA application to the culture medium
    corecore