32 research outputs found
Stromal Cell-Derived Factor 1 Polymorphism in Retinal Vein Occlusion
BACKGROUND: Stromal cell-derived factor 1 (SDF1) has crucial role in the regulation of angiogenesis and ocular neovascularisation (NV). The purpose of this study was to evaluate the association between SDF1-3'G(801)A polymorphism and NV complications of retinal vein occlusion (RVO). METHODS: 130 patients with RVO (median age: 69.0, range 35-93 years; male/female- 58/72; 55 patients had central RVO, 75 patients had branch RVO) were enrolled in this study. In the RVO group, 40 (30.8%) patients were diagnosed with NV complications of RVO and 90 (69.2%) patients without NVs. The median follow up period was 40.3 months (range: 18-57 months). The SDF1-3'G(801)A polymorphism was detected by PCR-RFLP. Allelic prevalence was related to reference values obtained in the control group consisted of 125 randomly selected, age and gender matched, unrelated volunteers (median age: 68.0, range 36-95 years; male/female- 53/72). Statistical analysis of the allele and genotype differences between groups (RVO patients vs controls; RVO patients with NV vs RVO patients without NV) was determined by chi-squared test. P value of <0.05 was considered statistically significant. RESULTS: Hardy-Weinberg criteria was fulfilled in all groups. The SDF1-3'G(801)A allele and genotype frequencies of RVO patients were similar to controls (SDF1-3'A allele: 22.3% vs 20.8%; SDF1-3'(801)AA: 5.4% vs 4.8%, SDF1-3'(801)GG: 60.8% vs 63.2%). The frequency of SDF1-3'(801)AA and SDF1-3'(801)GA genotypes, as well as the SDF1-3'(801)A allele frequency were higher in RVO patients with NV versus in patients without NV complication (SDF1-3'(801)AA+AG genotypes: 57.5% vs 31.1%, p = 0.008; SDF1-3'(801)A allele: 35.0% vs 16.7%, p = 0.002) or versus controls (SDF1-3'(801)AA+AG genotypes 57.5% vs 36.8%, p = 0.021; SDF1-3'(801)A allele: 35.0% vs 20.8% p = 0.01). Carrying of SDF1-3'(801)A allele increased the risk of neovascularisation complications of RVO by 2.69 (OR, 95% CI = 1.47-4.93). CONCLUSION: These findings suggest that carrying SDF1-3'(801)A allele plays a role in the development of neovascular complications in retinal vein occlusion
De novo assembly of a transcriptome from the eggs and early embryos of Astropecten aranciacus
Starfish have been instrumental in many fields of biological and ecological research. Oocytes of Astropecten aranciacus, a common species native to the Mediterranean Sea and the East Atlantic, have long been used as an experimental model to study meiotic maturation, fertilization, intracellular Ca2+ signaling, and cell cycle controls. However, investigation of the underlying molecular mechanisms has often been hampered by the overall lack of DNA or protein sequences for the species. In this study, we have assembled a transcriptome for this species from the oocytes, eggs, zygotes, and early embryos, which are known to have the highest RNA sequence complexity. Annotation of the transcriptome identified over 32,000 transcripts including the ones that encode 13 distinct cyclins and as many cyclin-dependent kinases (CDK), as well as the expected components of intracellular Ca2+ signaling toolkit. Although the mRNAs of cyclin and CDK families did not undergo significant abundance changes through the stages from oocyte to early embryo, as judged by real-time PCR, the transcript encoding Mos, a negative regulator of mitotic cell cycle, was drastically reduced during the period of rapid cleavages. Molecular phylogenetic analysis using the homologous amino acid sequences of cytochrome oxidase subunit I from A. aranciacus and 30 other starfish species indicated that Paxillosida, to which A. aranciacus belongs, is not likely to be the most basal order in Asteroidea. Taken together, the first transcriptome we assembled in this species is expected to enable us to perform comparative studies and to design gene-specific molecular tools with which to tackle long-standing biological questions
Analysis of horse-related injuries in children
PURPOSE: The purpose of the present study was to investigate factors affecting the nature, characteristics, severity and outcome of horseback and horse care injuries in paediatric patients and to create guidelines for injury prevention. METHODS: Detailed clinical records of 265 children sustained horse-riding related injuries have been analysed. Questionnaires were mailed to provide follow-up information for patients who have been treated in either Department of Paediatric Surgery in Pécs, Hungary, or Department of Paediatric Surgery in Graz, Austria between 1999 and 2003. Those 112 children (42%) who answered the questionnaire were included in the study and further analyses were performed. RESULTS: Female to male ratio of the 112 patients was 101/11. Trauma occurred during horseback riding accounted for 76.8% of all cases; these injuries represented more severe cases comparing to those which happened while handling a horse (23.2%). The mechanism as well as the localisation of injury displayed a close association with age. CONCLUSIONS: Prevention strategies targeting horse-related injuries at children should appreciate the age-dependent nature of injury as well as the fact that injury severity is not necessarily associated with the experience of the rider
Systematic phosphorylation analysis of human mitotic protein complexes.
Progression through mitosis depends on a large number of protein complexes that regulate the major structural and physiological changes necessary for faithful chromosome segregation. Most, if not all, of the mitotic processes are regulated by a set of mitotic protein kinases that control protein activity by phosphorylation. Although many mitotic phosphorylation events have been identified in proteome-scale mass spectrometry studies, information on how these phosphorylation sites are distributed within mitotic protein complexes and which kinases generate these phosphorylation sites is largely lacking. We used systematic protein-affinity purification combined with mass spectrometry to identify 1818 phosphorylation sites in more than 100 mitotic protein complexes. In many complexes, the phosphorylation sites were concentrated on a few subunits, suggesting that these subunits serve as "switchboards" to relay the kinase-regulatory signals within the complexes. Consequent bioinformatic analyses identified potential kinase-substrate relationships for most of these sites. In a subsequent in-depth analysis of key mitotic regulatory complexes with the Aurora kinase B (AURKB) inhibitor Hesperadin and a new Polo-like kinase (PLK1) inhibitor, BI 4834, we determined the kinase dependency for 172 phosphorylation sites on 41 proteins. Combination of the results of the cellular studies with Scansite motif prediction enabled us to identify 14 sites on six proteins as direct candidate substrates of AURKB or PLK1
Microglia contribute to neuronal synchrony despite endogenous ATP-related phenotypic transformation in acute mouse brain slices
Abstract Acute brain slices represent a workhorse model for studying the central nervous system (CNS) from nanoscale events to complex circuits. While slice preparation inherently involves tissue damage, it is unclear how microglia, the main immune cells and damage sensors of the CNS react to this injury and shape neuronal activity ex vivo. To this end, we investigated microglial phenotypes and contribution to network organization and functioning in acute brain slices. We reveal time-dependent microglial phenotype changes influenced by complex extracellular ATP dynamics through P2Y12R and CX3CR1 signalling, which is sustained for hours in ex vivo mouse brain slices. Downregulation of P2Y12R and changes of microglia-neuron interactions occur in line with alterations in the number of excitatory and inhibitory synapses over time. Importantly, functional microglia modulate synapse sprouting, while microglial dysfunction results in markedly impaired ripple activity both ex vivo and in vivo. Collectively, our data suggest that microglia are modulators of complex neuronal networks with important roles to maintain neuronal network integrity and activity. We suggest that slice preparation can be used to model time-dependent changes of microglia-neuron interactions to reveal how microglia shape neuronal circuits in physiological and pathological conditions