17 research outputs found
The largest type study of Agaricales species to date: bringing identification and nomenclature of Phlegmacium (Cortinarius) into the DNA era
Cortinarius is a species-rich and morphologically challenging genus with a cosmopolitan distribution. Many names have not been used consistently and in some instances the same species has been described two or more times under separate names. This study focuses on subg. Phlegmacium as traditionally deïŹned and includes species from boreal and temperate areas of the northern hemisphere. Our goals for this project were to: i) study type material to determine which species already have been described; ii) stabilize the use of Friesian and other older names by choosing a neo- or epitype; iii) describe new species that were discovered during the process of studying specimens; and iv) establish an accurate ITS barcoding database for Phlegmacium species. A total of 236 types representing 154 species were studied. Of these 114 species are described only once whereas 40 species had one ore more synonyms. Of the names studied only 61 were currently represented in GenBank. Neotypes are proposed for 21 species, and epitypes are designated for three species. In addition, 20 new species are described and six new combinations made. As a consequence ITS barcodes for 175 Cortinarius species are released
Association of mitochondrial DNA haplogroups J and K with low response in exercise training among Finnish military conscripts
Abstract
Background: We have previously suggested that some of the mutations defining mitochondrial DNA (mtDNA) haplogroups J and K produce an uncoupling effect on oxidative phosphorylation and thus are detrimental for elite endurance performance. Here, the association between haplogroups J and K and physical performance was determined in a population-based cohort of 1036 Finnish military conscripts.
Results: Following a standard-dose training period, excellence in endurance performance was less frequent among subjects with haplogroups J or K than among subjects with non-JK haplogroups (p =â0.041), and this finding was more apparent among the best-performing subjects (p <â0.001).
Conclusions: These results suggest that mtDNA haplogroups are one of the genetic determinants explaining individual variability in the adaptive response to endurance training, and mtDNA haplogroups J and K are markers of low-responders in exercise training
Association between mitochondrial DNA haplogroups J and K, serum branched-chain amino acids and lowered capability for endurance exercise
Abstract
Background: Endurance exercise training promotes the catabolism of branched-chain amino acids (BCAAs) in skeletal muscles. We have previously shown that mitochondrial DNA (mtDNA) haplogroups J and K are markers of low responders in endurance training. In this paper, we hypothesize that BCAA catabolism is a surrogate marker of lower respiratory chain activity attributed to these haplogroups. We evaluated whether exercise-induced changes in amino acid concentrations differ between subjects harbouring mtDNA haplogroups J or K and those with non-JK haplogroups.
Methods: Finnish male conscripts (Nâ=â633) undertook the 12-min Cooper running test at the beginning and end of their military service. The intervention during the service mainly included endurance aerobic exercise and sports-related muscle training. Concentrations of seven amino acids were analysed in the serum using a high-throughput ÂčH NMR metabolomics platform. Total DNA was extracted from whole blood, and restriction fragment analysis was used to determine mtDNA haplogroups J and K.
Results: The concentrations of the seven amino acids were higher following the intervention, with the exception of phenylalanine; interestingly, the increase in the concentrations of three BCAAs was larger in subjects with haplogroup J or K than in subjects with non-JK haplogroups (pâ=â0.029). MtDNA haplogroups J and K share two common nonsynonymous variants. Structural analysis based on crystallographic data on bovine complexes I and III revealed that the Leu18 variant in cytochrome b encoded by m.14798Tâ>âC may interfere with ubiquinone binding at the Qi site in complex III.
Conclusions: The increase in the concentrations of serum BCAAs following exercise intervention differs between subjects harbouring mtDNA haplogroup J or K and those harbouring non-JK haplogroups. Lower response in endurance training and difference in exercise-induced increase in the concentrations of serum BCAAs suggest decreased respiratory chain activity. Haplogroups J and K share m.14798Tâ>âC in MT-CYB, which may hamper the function of complex III