3 research outputs found

    Paleo-Immunology: Evidence Consistent with Insertion of a Primordial Herpes Virus-Like Element in the Origins of Acquired Immunity

    Get PDF
    BACKGROUND:The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the "RAG transposon". METHODOLOGY/PRINCIPAL FINDINGS:Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a "RAG transposon." A subsequent "arms race" between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). CONCLUSIONS/SIGNIFICANCE:A "co-regulatory" model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the "RAG-transposon" hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination

    Fresh Insights into Disease Etiology and the Role of Microbial Pathogens

    No full text
    Pathogens have been implicated in the initiation and/or promotion of systemic sclerosis (scleroderma, SSc); however, no evidence was found to substantiate the direct contribution to this disease in past years. Recently, significant advances have been made in understanding the role of the innate immune system in SSc pathogenesis, supporting the idea that pathogens might interact with host innate immune-regulatory responses in SSc. In light of these findings, we review the studies that identified the presence of pathogens in SSc, along with studies on pathogens implicated in driving the innate immune dysregulation in SSc. The goal of this review is to illustrate how these pathogens, specifically viruses, may play important role both as triggers of the innate immune system, and critical players in the development of SSc disease
    corecore