47 research outputs found

    Ganglioside metabolism in a transgenic mouse model of Alzheimer's disease: expression of Chol-1α antigens in the brain

    Get PDF
    The accumulation of Aβ (amyloid β-protein) is one of the major pathological hallmarks in AD (Alzheimer's disease). Gangliosides, sialic acid-containing glycosphingolipids enriched in the nervous system and frequently used as biomarkers associated with the biochemical pathology of neurological disorders, have been suggested to be involved in the initial aggregation of Aβ. In the present study, we have examined ganglioside metabolism in the brain of a double-Tg (transgenic) mouse model of AD that co-expresses mouse/human chimaeric APP (amyloid precursor protein) with the Swedish mutation and human presenilin-1 with a deletion of exon 9. Although accumulation of Aβ was confirmed in the double-Tg mouse brains and sera, no statistically significant change was detected in the concentration and composition of major ganglio-N-tetraosyl-series gangliosides in the double-Tg brain. Most interestingly, Chol-1α antigens (cholinergic neuron-specific gangliosides), such as GT1aα and GQ1bα, which are minor species in the brain, were found to be increased in the double-Tg mouse brain. We interpret that the occurrence of these gangliosides may represent evidence for generation of cholinergic neurons in the AD brain, as a result of compensatory neurogenesis activated by the presence of Aβ

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    Delineating Amyloid Plaque Associated Neuronal Sphingolipids in Transgenic Alzheimer's Disease Mice (tgArcSwe) Using MALDI Imaging Mass Spectrometry

    Get PDF
    The major pathological hallmarks of Alzheimer's disease (AD) are the progressive aggregation and accumulation of beta-amyloid (A beta) and hyperphosphorylated tau protein into neurotoxic deposits. A beta aggregation has been suggested as the critical early inducer, driving the disease progression. However, the factors that promote neurotoxic A beta aggregation remain elusive. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In the present study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS)-based imaging was used on transgenic Alzheimer's disease mouse (tgArcSwe) brain tissue to investigate the sphingolipid microenvironment of individual A beta plaques and elucidate plaque-associated sphingolipid alterations. Multivariate data analysis was used to interrogate the IMS data for identifying pathologically relevant, anatomical features based on their lipid chemical profile. This approach revealed sphingolipid species that distinctly located to cortical and hippocampal deposits, whose A beta identity was further verified using fluorescent amyloid staining and immunohistochemistry. Subsequent multivariate statistical analysis of the spectral data revealed significant localization of gangliosides and ceramides species to A beta positive plaques, which was accompanied by distinct local reduction of sulfatides. These plaque-associated changes in sphingolipid levels implicate a functional role of sphingolipid metabolism in A beta plaque pathology and AD pathogenesis. Taken together, the presented data highlight the potential of imaging mass spectrometry as a powerful approach for probing A beta plaque-associated lipid changes underlying AD pathology

    Designed Fluorescent Probes Reveal Interactions between Amyloid-β(1–40) Peptides and GM1 Gangliosides in Micelles and Lipid Vesicles

    Get PDF
    A hallmark of the common Alzheimer's disease (AD) is the pathological conversion of its amphiphatic amyloid-β (Aβ) peptide into neurotoxic aggregates. In AD patients, these aggregates are often found to be tightly associated with neuronal GM1 ganglioside lipids, suggesting an involvement of GM1 not only in aggregate formation but also in neurotoxic events. Significant interactions were found between micelles made of newly synthesized fluorescent GM1 gangliosides labeled in the polar headgroup or the hydrophobic chain and Aβ(1–40) peptide labeled with a BODIPY-FL-C1 fluorophore at positions 12 and 26, respectively. From an analysis of energy transfer between the different fluorescence labels and their location in the molecules, we were able to place the Aβ peptide inside GM1 micelles, close to the hydrophobic-hydrophilic interface. Large unilamellar vesicles composed of a raftlike GM1/bSM/cholesterol lipid composition doped with labeled GM1 at various positions also interact with labeled Aβ peptide tagged to amino acids 2 or 26. A faster energy transfer was observed from the Aβ peptide to bilayers doped with 581/591-BODIPY-C11-GM1 in the nonpolar part of the lipid compared with 581/591-BODIPY-C5-GM1 residing in the polar headgroup. These data are compatible with a clustering process of GM1 molecules, an effect that not only increases the Aβ peptide affinity, but also causes a pronounced Aβ peptide penetration deeper into the lipid membrane; all these factors are potentially involved in Aβ peptide aggregate formation due to an altered ganglioside metabolism found in AD patients
    corecore