4 research outputs found

    Longitudinal and multimodal in vivo imaging of tumor hypoxia and its downstream molecular events

    Full text link
    Tumor hypoxia and the hypoxia-inducible factors (HIFs) play a central role in the development of cancer. To study the relationship between tumor growth, tumor hypoxia, the stabilization of HIF-1α, and HIF transcriptional activity, we have established an in vivo imaging tool that allows longitudinal and noninvasive monitoring of these processes in a mouse C51 allograft tumor model. We used positron emission tomography (PET) with the hypoxia-sensitive tracer [18F]-fluoromisonidazole (FMISO) to measure tumor hypoxia over 14 days. Stabilization of HIF-1α and HIF transcriptional activity were assessed by bioluminescence imaging using the reporter constructs HIF-1α-luciferase and hypoxia response element-luciferase, respectively, stably expressed in C51 cells. Interestingly, we did not observe any major change in the level of tumor hypoxia throughout the observation period whereas HIF-1α levels and HIF activity showed drastic temporal variations. When comparing the readouts as a function of time we found a good correlation between HIF-1α levels and HIF activity. In contrast, there was no significant correlation between the [18F]-FMISO PET and HIF readouts. The tool developed in this work allows for the longitudinal study of tumor hypoxia and HIF-1α in cancer in an individual animal and will be of value when monitoring the efficacy of therapeutical interventions targeting the HIF pathway

    PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage.

    No full text
    The promyelocytic leukemia (PML) tumor suppressor protein, a central regulator of cell proliferation and apoptosis, is frequently fused to the retinoic acid receptor-alpha (RARalpha) in acute PML. Here we show the interaction of PML with another tumor suppressor protein, the serine/threonine kinase homeodomain-interacting protein kinase (HIPK2). In response to DNA damage, HIPK2 phosphorylates PML at serines 8 and 38. Although HIPK2-mediated phosphorylation of PML occurs early during the DNA damage response, the oncogenic PML-RARalpha fusion protein is phosphorylated with significantly delayed kinetics. DNA damage or HIPK2 expression leads to the stabilization of PML and PML-RARalpha proteins. The N-terminal phosphorylation sites contribute to the DNA damage-induced PML SUMOylation and are required for the ability of PML to cooperate with HIPK2 for the induction of cell death

    Interaction of purinergic receptors with GPCRs, ion channels, tyrosine kinase and steroid hormone receptors orchestrates cell function

    Get PDF
    Extracellular purines and pyrimidines have emerged as key regulators of a wide range of physiological and pathophysiological cellular processes acting through P1 and P2 cell surface receptors. Increasing evidence suggests that purinergic receptors can interact with and/or modulate the activity of other classes of receptors and ion channels. This review will focus on the interactions of purinergic receptors with other GPCRs, ion channels, receptor tyrosine kinases, and steroid hormone receptors. Also, the signal transduction pathways regulated by these complexes and their new functional properties are discussed
    corecore