187 research outputs found

    Nonconventional Large Deviations Theorems

    Full text link
    We obtain large deviations theorems for nonconventional sums with underlying process being a Markov process satisfying the Doeblin condition or a dynamical system such as subshift of finite type or hyperbolic or expanding transformation

    Metastability in Interacting Nonlinear Stochastic Differential Equations II: Large-N Behaviour

    Full text link
    We consider the dynamics of a periodic chain of N coupled overdamped particles under the influence of noise, in the limit of large N. Each particle is subjected to a bistable local potential, to a linear coupling with its nearest neighbours, and to an independent source of white noise. For strong coupling (of the order N^2), the system synchronises, in the sense that all oscillators assume almost the same position in their respective local potential most of the time. In a previous paper, we showed that the transition from strong to weak coupling involves a sequence of symmetry-breaking bifurcations of the system's stationary configurations, and analysed in particular the behaviour for coupling intensities slightly below the synchronisation threshold, for arbitrary N. Here we describe the behaviour for any positive coupling intensity \gamma of order N^2, provided the particle number N is sufficiently large (as a function of \gamma/N^2). In particular, we determine the transition time between synchronised states, as well as the shape of the "critical droplet", to leading order in 1/N. Our techniques involve the control of the exact number of periodic orbits of a near-integrable twist map, allowing us to give a detailed description of the system's potential landscape, in which the metastable behaviour is encoded

    Modeling and Analysis of Interactions in Virtual Enterprises

    Get PDF
    Advances in computer networking technology and open system standards are making the creation and management of virtual enterprises feasible. A virtual enterprise is a temporary consortium of autonomous, diverse, and possibly geographically dispersed organizations that pool their resources to meet short-term objectives and exploit fastchanging market trends. For a virtual enterprise to succeed, its business processes must be automated, and its startup costs must be minimized. In this paper we describe a formal framework for modeling and reasoning about interactions in a virtual enterprise. Such a framework will form the basis for tools that provide automated support for creation and operation of virtual enterprises. 1

    A simple piston problem in one dimension

    Full text link
    We study a heavy piston that separates finitely many ideal gas particles moving inside a one-dimensional gas chamber. Using averaging techniques, we prove precise rates of convergence of the actual motions of the piston to its averaged behavior. The convergence is uniform over all initial conditions in a compact set. The results extend earlier work by Sinai and Neishtadt, who determined that the averaged behavior is periodic oscillation. In addition, we investigate the piston system when the particle interactions have been smoothed. The convergence to the averaged behavior again takes place uniformly, both over initial conditions and over the amount of smoothing.Comment: Accepted by Nonlinearity. 27 pages, 2 figure

    Stochastic stability at the boundary of expanding maps

    Full text link
    We consider endomorphisms of a compact manifold which are expanding except for a finite number of points and prove the existence and uniqueness of a physical measure and its stochastical stability. We also characterize the zero-noise limit measures for a model of the intermittent map and obtain stochastic stability for some values of the parameter. The physical measures are obtained as zero-noise limits which are shown to satisfy Pesin?s Entropy Formula

    Ruelle-Perron-Frobenius spectrum for Anosov maps

    Full text link
    We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (Information on the existence of an SRB measure, its smoothness properties and statistical properties readily follow from such a result.) In dimension d=2d=2 we show that the transfer operator associated to smooth random perturbations of the map is close, in a proper sense, to the unperturbed transfer operator. This allows to obtain easily very strong spectral stability results, which in turn imply spectral stability results for smooth deterministic perturbations as well. Finally, we are able to implement an Ulam type finite rank approximation scheme thus reducing the study of the spectral properties of the transfer operator to a finite dimensional problem.Comment: 58 pages, LaTe

    Convergence of invariant densities in the small-noise limit

    Full text link
    This paper presents a systematic numerical study of the effects of noise on the invariant probability densities of dynamical systems with varying degrees of hyperbolicity. It is found that the rate of convergence of invariant densities in the small-noise limit is frequently governed by power laws. In addition, a simple heuristic is proposed and found to correctly predict the power law exponent in exponentially mixing systems. In systems which are not exponentially mixing, the heuristic provides only an upper bound on the power law exponent. As this numerical study requires the computation of invariant densities across more than 2 decades of noise amplitudes, it also provides an opportunity to discuss and compare standard numerical methods for computing invariant probability densities.Comment: 27 pages, 19 figures, revised with minor correction

    Dissipation time and decay of correlations

    Full text link
    We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and its associated propagators: spectral properties, local expansivity, and global mixing properties. We show that the dissipation is slow for a general class of non-weakly-mixing maps; on the opposite, it is fast for a large class of exponentially mixing systems which include uniformly expanding maps and Anosov diffeomorphisms.Comment: 26 Pages, LaTex. Submitted to Nonlinearit

    Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems

    Get PDF
    We introduce a new method, allowing to describe slowly time-dependent Langevin equations through the behaviour of individual paths. This approach yields considerably more information than the computation of the probability density. The main idea is to show that for sufficiently small noise intensity and slow time dependence, the vast majority of paths remain in small space-time sets, typically in the neighbourhood of potential wells. The size of these sets often has a power-law dependence on the small parameters, with universal exponents. The overall probability of exceptional paths is exponentially small, with an exponent also showing power-law behaviour. The results cover time spans up to the maximal Kramers time of the system. We apply our method to three phenomena characteristic for bistable systems: stochastic resonance, dynamical hysteresis and bifurcation delay, where it yields precise bounds on transition probabilities, and the distribution of hysteresis areas and first-exit times. We also discuss the effect of coloured noise.Comment: 37 pages, 11 figure
    corecore