187 research outputs found
Nonconventional Large Deviations Theorems
We obtain large deviations theorems for nonconventional sums with underlying
process being a Markov process satisfying the Doeblin condition or a dynamical
system such as subshift of finite type or hyperbolic or expanding
transformation
Metastability in Interacting Nonlinear Stochastic Differential Equations II: Large-N Behaviour
We consider the dynamics of a periodic chain of N coupled overdamped
particles under the influence of noise, in the limit of large N. Each particle
is subjected to a bistable local potential, to a linear coupling with its
nearest neighbours, and to an independent source of white noise. For strong
coupling (of the order N^2), the system synchronises, in the sense that all
oscillators assume almost the same position in their respective local potential
most of the time. In a previous paper, we showed that the transition from
strong to weak coupling involves a sequence of symmetry-breaking bifurcations
of the system's stationary configurations, and analysed in particular the
behaviour for coupling intensities slightly below the synchronisation
threshold, for arbitrary N. Here we describe the behaviour for any positive
coupling intensity \gamma of order N^2, provided the particle number N is
sufficiently large (as a function of \gamma/N^2). In particular, we determine
the transition time between synchronised states, as well as the shape of the
"critical droplet", to leading order in 1/N. Our techniques involve the control
of the exact number of periodic orbits of a near-integrable twist map, allowing
us to give a detailed description of the system's potential landscape, in which
the metastable behaviour is encoded
Modeling and Analysis of Interactions in Virtual Enterprises
Advances in computer networking technology and open system standards are making the creation and management of virtual enterprises feasible. A virtual enterprise is a temporary consortium of autonomous, diverse, and possibly geographically dispersed organizations that pool their resources to meet short-term objectives and exploit fastchanging market trends. For a virtual enterprise to succeed, its business processes must be automated, and its startup costs must be minimized. In this paper we describe a formal framework for modeling and reasoning about interactions in a virtual enterprise. Such a framework will form the basis for tools that provide automated support for creation and operation of virtual enterprises. 1
A simple piston problem in one dimension
We study a heavy piston that separates finitely many ideal gas particles
moving inside a one-dimensional gas chamber. Using averaging techniques, we
prove precise rates of convergence of the actual motions of the piston to its
averaged behavior. The convergence is uniform over all initial conditions in a
compact set. The results extend earlier work by Sinai and Neishtadt, who
determined that the averaged behavior is periodic oscillation. In addition, we
investigate the piston system when the particle interactions have been
smoothed. The convergence to the averaged behavior again takes place uniformly,
both over initial conditions and over the amount of smoothing.Comment: Accepted by Nonlinearity. 27 pages, 2 figure
Stochastic stability at the boundary of expanding maps
We consider endomorphisms of a compact manifold which are expanding except
for a finite number of points and prove the existence and uniqueness of a
physical measure and its stochastical stability. We also characterize the
zero-noise limit measures for a model of the intermittent map and obtain
stochastic stability for some values of the parameter. The physical measures
are obtained as zero-noise limits which are shown to satisfy Pesin?s Entropy
Formula
Ruelle-Perron-Frobenius spectrum for Anosov maps
We extend a number of results from one dimensional dynamics based on spectral
properties of the Ruelle-Perron-Frobenius transfer operator to Anosov
diffeomorphisms on compact manifolds. This allows to develop a direct operator
approach to study ergodic properties of these maps. In particular, we show that
it is possible to define Banach spaces on which the transfer operator is
quasicompact. (Information on the existence of an SRB measure, its smoothness
properties and statistical properties readily follow from such a result.) In
dimension we show that the transfer operator associated to smooth random
perturbations of the map is close, in a proper sense, to the unperturbed
transfer operator. This allows to obtain easily very strong spectral stability
results, which in turn imply spectral stability results for smooth
deterministic perturbations as well. Finally, we are able to implement an Ulam
type finite rank approximation scheme thus reducing the study of the spectral
properties of the transfer operator to a finite dimensional problem.Comment: 58 pages, LaTe
Convergence of invariant densities in the small-noise limit
This paper presents a systematic numerical study of the effects of noise on
the invariant probability densities of dynamical systems with varying degrees
of hyperbolicity. It is found that the rate of convergence of invariant
densities in the small-noise limit is frequently governed by power laws. In
addition, a simple heuristic is proposed and found to correctly predict the
power law exponent in exponentially mixing systems. In systems which are not
exponentially mixing, the heuristic provides only an upper bound on the power
law exponent. As this numerical study requires the computation of invariant
densities across more than 2 decades of noise amplitudes, it also provides an
opportunity to discuss and compare standard numerical methods for computing
invariant probability densities.Comment: 27 pages, 19 figures, revised with minor correction
Dissipation time and decay of correlations
We consider the effect of noise on the dynamics generated by
volume-preserving maps on a d-dimensional torus. The quantity we use to measure
the irreversibility of the dynamics is the dissipation time. We focus on the
asymptotic behaviour of this time in the limit of small noise. We derive
universal lower and upper bounds for the dissipation time in terms of various
properties of the map and its associated propagators: spectral properties,
local expansivity, and global mixing properties. We show that the dissipation
is slow for a general class of non-weakly-mixing maps; on the opposite, it is
fast for a large class of exponentially mixing systems which include uniformly
expanding maps and Anosov diffeomorphisms.Comment: 26 Pages, LaTex. Submitted to Nonlinearit
Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems
We introduce a new method, allowing to describe slowly time-dependent
Langevin equations through the behaviour of individual paths. This approach
yields considerably more information than the computation of the probability
density. The main idea is to show that for sufficiently small noise intensity
and slow time dependence, the vast majority of paths remain in small space-time
sets, typically in the neighbourhood of potential wells. The size of these sets
often has a power-law dependence on the small parameters, with universal
exponents. The overall probability of exceptional paths is exponentially small,
with an exponent also showing power-law behaviour. The results cover time spans
up to the maximal Kramers time of the system. We apply our method to three
phenomena characteristic for bistable systems: stochastic resonance, dynamical
hysteresis and bifurcation delay, where it yields precise bounds on transition
probabilities, and the distribution of hysteresis areas and first-exit times.
We also discuss the effect of coloured noise.Comment: 37 pages, 11 figure
- …