1,875 research outputs found

    Special Quantum Field Theories In Eight And Other Dimensions

    Get PDF
    We build nearly topological quantum field theories in various dimensions. We give special attention to the case of 8 dimensions for which we first consider theories depending only on Yang-Mills fields. Two classes of gauge functions exist which correspond to the choices of two different holonomy groups in SO(8), namely SU(4) and Spin(7). The choice of SU(4) gives a quantum field theory for a Calabi-Yau fourfold. The expectation values for the observables are formally holomorphic Donaldson invariants. The choice of Spin(7) defines another eight dimensional theory for a Joyce manifold which could be of relevance in M- and F-theories. Relations to the eight dimensional supersymmetric Yang-Mills theory are presented. Then, by dimensional reduction, we obtain other theories, in particular a four dimensional one whose gauge conditions are identical to the non-abelian Seiberg-Witten equations. The latter are thus related to pure Yang-Mills self-duality equations in 8 dimensions as well as to the N=1, D=10 super Yang-Mills theory. We also exhibit a theory that couples 3-form gauge fields to the second Chern class in eight dimensions, and interesting theories in other dimensions.Comment: 36 pages, latex. References have been added together with a not

    Black Holes and Black String-like Solutions in Codimension-2 Braneworlds

    Full text link
    We discuss black hole solutions with a Gauss-Bonnet term in the bulk and an induced gravity term on a thin brane of codimension-2. We show that these black holes can be localized on the brane, and they can be extended further into the bulk by a warp function. These solutions have regular horizons and no other curvature singularities appear apart from the string-like ones. The projection of the Gauss-Bonnet term on the brane imposes a constraint relation which dictates the form of matter on the brane and in the bulk.Comment: 9 pages, no figures, plenary talk given at the 7th Friedmann International Seminar on Gravitation and Cosmology, 29 June-5 July 2008, Joao Pessoa, Brazil, to appear in the proceeding

    Near-infrared spectroscopy and plasma homovanillic acid levels in bipolar disorder: a case report

    Get PDF
    Misdiagnosis of bipolar disorder is a serious, but not unusual problem for patients. Nevertheless, there are few biomarkers for distinguishing unipolar and bipolar disorder. Near-infrared spectroscopy (NIRS) is a noninvasive and useful method for the measurement of hemoglobin concentration changes in the cortical surface area, which enables the assessment of brain function. We measured NIRS and plasma monoamine metabolite levels in a patient with bipolar disorder. A 22-year-old man was admitted due to major depression. At admission, NIRS findings showed oxygenated hemoglobin reincrease in the posttask period, which is characteristic of schizophrenia. After treatment with paroxetine, he became manic with psychotic symptoms. His plasma level of homovanillic acid just before the manic switch was ten times higher than that just after paroxetine initiation. Treatment with lithium and antipsychotics was successful, and plasma homovanillic acid decreased after treatment. In this case, the NIRS findings may predict a possible risk of a manic switch, which is likely induced by paroxetine. NIRS may be able to help distinguish unipolar and bipolar disorder in clinical settings

    Cosmological Evolution of a Purely Conical Codimension-2 Brane World

    Get PDF
    We study the cosmological evolution of isotropic matter on an infinitely thin conical codimension-two brane-world. Our analysis is based on the boundary dynamics of a six-dimensional model in the presence of an induced gravity term on the brane and a Gauss-Bonnet term in the bulk. With the assumption that the bulk contains only a cosmological constant Lambda_B, we find that the isotropic evolution of the brane-universe imposes a tuned relation between the energy density and the brane equation of state. The evolution of the system has fixed points (attractors), which correspond to a final state of radiation for Lambda_B=0 and to de Sitter state for Lambda_B>0. Furthermore, considering anisotropic matter on the brane, the tuning of the parameters is lifted, and new regions of the parametric space are available for the cosmological evolution of the brane-universe. The analysis of the dynamics of the system shows that, the isotropic fixed points remain attractors of the system, and for values of Lambda_B which give acceptable cosmological evolution of the equation of state, the line of isotropic tuning is a very weak attractor. The initial conditions, in this case, need to be fine tuned to have an evolution with acceptably small anisotropy.Comment: 20 pages, 4 figures, typo correcte

    Universal upper limit on inflation energy scale from cosmic magnetic field

    Full text link
    Recently observational lower bounds on the strength of cosmic magnetic fields were reported, based on gamma-ray flux from distant blazars. If inflation is responsible for the generation of such magnetic fields then the inflation energy scale is bounded from above as rho_{inf}^{1/4} < 2.5 times 10^{-7}M_{Pl} times (B_{obs}/10^{-15}G)^{-2} in a wide class of inflationary magnetogenesis models, where B_{obs} is the observed strength of cosmic magnetic fields. The tensor-to-scalar ratio is correspondingly constrained as r< 10^{-19} times (B_{obs}/10^{-15}G)^{-8}. Therefore, if the reported strength B_{obs} \geq 10^{-15}G is confirmed and if any signatures of gravitational waves from inflation are detected in the near future, then our result indicates some tensions between inflationary magnetogenesis and observations.Comment: 12pages, v2: several discussions and references added, version accepted for publication by JCA

    Geometry and cosmological perturbations in the bulk inflaton model

    Full text link
    We consider a braneworld inflation model driven by the dynamics of a scalar field living in the 5-dimensional bulk, the so-called ``bulk inflaton model'', and investigate the geometry in the bulk and large scale cosmological perturbations on the brane. The bulk gravitational effects on the brane are described by a projection of the 5-dimensional Weyl tensor, which we denote by EμνE_{\mu\nu}. Focusing on a tachionic potential model, we take a perturbative approach in the anti-de Sitter (AdS5_5) background with a single de Sitter brane. We first formulate the evolution equations for EμνE_{\mu\nu} in the bulk. Next, applying them to the case of a spatially homogeneous brane, we obtain two different integral expressions for EμνE_{\mu\nu}. One of them reduces to the expression obtained previously when evaluated on the brane. The other is a new expression that may be useful for analyzing the bulk geometry. Then we consider superhorizon scale cosmological perturbations and evaluate the bulk effects onto the brane. In the limit H2ℓ2≪1H^2\ell^2\ll1, where HH is the Hubble parameter on the brane and ℓ\ell is the bulk curvature radius, we find that the effective theory on the brane is identical to the 4-dimensional Einstein-scalar theory with a simple rescaling of the potential even under the presence of inhomogeneities. % atleast on super-Hubble horizon scales. In particular, it is found that the anticipated non-trivial bulk effect due to the spatially anisotropic part of EμνE_{\mu\nu} may appear only at %second order in the low energy expansion, i.e., at O(H4ℓ4)O(H^4\ell^4).Comment: 21 pages including 6 pages for several appendixes, no figure

    Acute effects of cigarette smoking on global cerebral blood flow (GCBF) in overnight abstinent tobacco smokers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110009/1/cptclpt2005261.pd
    • …
    corecore