10,383 research outputs found
Hall current effects in dynamic magnetic reconnection solutions
The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies cH>η where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular "separator" component in the magnetic field. Only if the stronger condition c2/H > η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c2/H > η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is "head-on" (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced
Dynamic magnetic reconnection in three space dimensions: Fan current solutions
The problem of incompressible, nonlinear magnetic reconnection in three-dimensional "open" geometries is considered. An analytic treatment shows that dynamic "fan current" reconnection may be driven by superposing long wavelength, finite amplitude, plane wave disturbances onto three-dimensional magnetic X-points. The nonlinear reconnection of the field is preceded by an advection phase in which magnetic shear waves drive large currents as they localize in the vicinity of the magnetic null. Analytic arguments, reinforced by detailed simulations, show that the ohmic dissipation rate can be independent of the plasma resistivity if the merging is suitably driven
Exact solutions for steady-state, planar, magnetic reconnection in an incompressible viscous plasma
The exact planar reconnection analysis of Craig and Henton [Astrophys. J. 450, 280 (1995)] is extended to include the finite viscosity of the fluid and the presence of nonplanar components in the magnetic and velocity fields. It is shown that fast reconnection can be achieved for sufficiently small values of the kinematic viscosity. In particular, the dissipation rate is sustained by the strong amplification of planar magnetic field components advected toward the neutral point. By contrast, nonplanar field components are advected without amplification and so dissipate energy at the slow Sweet–Parker rate
Analytic solutions of the magnetic annihilation and reconnection problems. I. Planar flow profiles
The phenomena of steady-state magnetic annihilation and reconnection in the vicinity of magnetic nulls are considered. It is shown that reconnective solutions can be derived by superposing the velocity and magnetic fields of simple magnetic annihilation models. These solutions contain most of the previous models for magnetic merging and reconnection, as well as introducing several new solutions. The various magnetic dissipation mechanisms are classified by examining the scaling of the Ohmic diffusion rate with plasma resistivity. Reconnection solutions generally allow more favorable "fast" dissipation scalings than annihilation models. In particular, reconnection models involving the advection of planar field components have the potential to satisfy the severe energy release requirements of the solar flare. The present paper is mainly concerned with magnetic fields embedded in strictly planar flows—a discussion of the more complicated three-dimensional flow patterns is presented in Part II [Phys. Plasmas 4, 110 (1997)]
Reconstruction of supernova {\nu}_{\mu}, {\nu}_{\tau}, anti-{\nu}_{\mu}, and anti-{\nu}_{\tau} neutrino spectra at scintillator detectors
We present a new technique to directly reconstruct the spectra of mu/tau
neutrinos and antineutrinos from a supernova, using neutrino-proton elastic
scattering events (nu+p to nu+p) at scintillator detectors. These neutrinos,
unlike electron neutrinos and antineutrinos, have only neutral current
interactions, which makes it very challenging, with any reaction, to detect
them and measure their energies. With updated inputs from theory and
experiments, we show that this channel provides a robust and sensitive measure
of their spectra. Given the low yields and lack of spectral information in
other neutral current channels, this is perhaps the only realistic way to
extract such information. This will be indispensable for understanding flavor
oscillations of SN neutrinos, as it is likely to be impossible to disentangle
neutrino mixing from astrophysical uncertainties in a SN without adequate
spectral coverage of all flavors. We emphasize that scintillator detectors,
e.g., Borexino, KamLAND, and SNO+, have the capability to observe these events,
but they must be adequately prepared with a trigger for a burst of low-energy
events. We also highlight the capabilities of a larger detector like LENA.Comment: v3: Typo corrected in Eq.14, and metadata edits. Matches PRD version.
14 pages, 9 figures, 1 tabl
Highly Efficient Modeling of Dynamic Coronal Loops
Observational and theoretical evidence suggests that coronal heating is
impulsive and occurs on very small cross-field spatial scales. A single coronal
loop could contain a hundred or more individual strands that are heated
quasi-independently by nanoflares. It is therefore an enormous undertaking to
model an entire active region or the global corona. Three-dimensional MHD codes
have inadequate spatial resolution, and 1D hydro codes are too slow to simulate
the many thousands of elemental strands that must be treated in a reasonable
representation. Fortunately, thermal conduction and flows tend to smooth out
plasma gradients along the magnetic field, so "0D models" are an acceptable
alternative. We have developed a highly efficient model called Enthalpy-Based
Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of
the average temperature, pressure, and density along a coronal strand. It
improves significantly upon earlier models of this type--in accuracy,
flexibility, and capability. It treats both slowly varying and highly impulsive
coronal heating; it provides the differential emission measure distribution,
DEM(T), at the transition region footpoints; and there are options for heat
flux saturation and nonthermal electron beam heating. EBTEL gives excellent
agreement with far more sophisticated 1D hydro simulations despite using four
orders of magnitude less computing time. It promises to be a powerful new tool
for solar and stellar studies.Comment: 34 pages, 8 figures, accepted by Astrophysical Journal (minor
revisions of original submitted version
On the determination of anti-neutrino spectra from nuclear reactors
In this paper we study the effect of, well-known, higher order corrections to
the allowed beta decay spectrum on the determination of anti-neutrino spectra
resulting from the decays of fission fragments. In particular, we try to
estimate the associated theory errors and find that induced currents like weak
magnetism may ultimately limit our ability to improve the current accuracy and
under certain circumstance could even largely increase the theoretical errors.
We also perform a critical evaluation of the errors associated with our method
to extract the anti-neutrino spectrum using synthetic beta spectra. It turns
out, that a fit using only virtual beta branches with a judicious choice of the
effective nuclear charge provides results with a minimal bias. We apply this
method to actual data for U235, Pu239 and Pu241 and confirm, within errors,
recent results, which indicate a net 3% upward shift in energy averaged
anti-neutrino fluxes. However, we also find significant shape differences which
can in principle be tested by high statistics anti-neutrino data samples.Comment: 20 pages, 5 figures, 9 tables, added references, version accepted for
publication in Phys. Rev. C. Corrected errors in tab. 1 and eqs. 18 and 19.
Results and conclusion unchange
Magnetic Flux Braiding: Force-Free Equilibria and Current Sheets
We use a numerical nonlinear multigrid magnetic relaxation technique to
investigate the generation of current sheets in three-dimensional magnetic flux
braiding experiments. We are able to catalogue the relaxed nonlinear force-free
equilibria resulting from the application of deformations to an initially
undisturbed region of plasma containing a uniform, vertical magnetic field. The
deformations are manifested by imposing motions on the bounding planes to which
the magnetic field is anchored. Once imposed the new distribution of magnetic
footpoints are then taken to be fixed, so that the rest of the plasma must then
relax to a new equilibrium configuration. For the class of footpoint motions we
have examined, we find that singular and nonsingular equilibria can be
generated. By singular we mean that within the limits imposed by numerical
resolution we find that there is no convergence to a well-defined equilibrium
as the number of grid points in the numerical domain is increased. These
singular equilibria contain current "sheets" of ever-increasing current
intensity and decreasing width; they occur when the footpoint motions exceed a
certain threshold, and must include both twist and shear to be effective. On
the basis of these results we contend that flux braiding will indeed result in
significant current generation. We discuss the implications of our results for
coronal heating.Comment: 13 pages, 12 figure
Bose-Einstein condensates with attractive 1/r interaction: The case of self-trapping
Amplifying on a proposal by O'Dell et al. for the realization of
Bose-Einstein condensates of neutral atoms with attractive interaction,
we point out that the instance of self-trapping of the condensate, without
external trap potential, is physically best understood by introducing
appropriate "atomic" units. This reveals a remarkable scaling property: the
physics of the condensate depends only on the two parameters and
, where is the particle number, the scattering length,
the "Bohr" radius and the trap frequency in atomic units. We
calculate accurate numerical results for self-trapping wave functions and
potentials, for energies, sizes and peak densities, and compare with previous
variational results. As a novel feature we point out the existence of a second
solution of the extended Gross-Pitaevskii equation for negative scattering
lengths, with and without trapping potential, which is born together with the
ground state in a tangent bifurcation. This indicates the existence of an
unstable collectively excited state of the condensate for negative scattering
lengths.Comment: 7 pages, 7 figures, to appear in Phys. Rev.
Proton acceleration in analytic reconnecting current sheets
Particle acceleration provides an important signature for the magnetic collapse that accompanies a solar flare. Most particle acceleration studies, however, invoke magnetic and electric field models that are analytically convenient rather than solutions of the governing magnetohydrodynamic equations. In this paper a self-consistent magnetic reconnection solution is employed to investigate proton orbits, energy gains, and acceleration timescales for proton acceleration in solar flares. The magnetic field configuration is derived from the analytic reconnection solution of Craig and Henton. For the physically realistic case in which magnetic pressure of the current sheet is limited at small resistivities, the model contains a single free parameter that specifies the shear of the velocity field. It is shown that in the absence of losses, the field produces particle acceleration spectra characteristic of magnetic X-points. Specifically, the energy distribution approximates a power law ~ξ-3/2 nonrelativistically, but steepens slightly at the higher energies. Using realistic values of the “effective” resistivity, we obtain energies and acceleration times that fall within the range of observational data for proton acceleration in the solar corona
- …