2 research outputs found
The re-identification risk of Canadians from longitudinal demographics
<p>Abstract</p> <p>Background</p> <p>The public is less willing to allow their personal health information to be disclosed for research purposes if they do not trust researchers and how researchers manage their data. However, the public is more comfortable with their data being used for research if the risk of re-identification is low. There are few studies on the risk of re-identification of Canadians from their basic demographics, and no studies on their risk from their longitudinal data. Our objective was to estimate the risk of re-identification from the basic cross-sectional and longitudinal demographics of Canadians.</p> <p>Methods</p> <p>Uniqueness is a common measure of re-identification risk. Demographic data on a 25% random sample of the population of Montreal were analyzed to estimate population uniqueness on postal code, date of birth, and gender as well as their generalizations, for periods ranging from 1 year to 11 years.</p> <p>Results</p> <p>Almost 98% of the population was unique on full postal code, date of birth and gender: these three variables are effectively a unique identifier for Montrealers. Uniqueness increased for longitudinal data. Considerable generalization was required to reach acceptably low uniqueness levels, especially for longitudinal data. Detailed guidelines and disclosure policies on how to ensure that the re-identification risk is low are provided.</p> <p>Conclusions</p> <p>A large percentage of Montreal residents are unique on basic demographics. For non-longitudinal data sets, the three character postal code, gender, and month/year of birth represent sufficiently low re-identification risk. Data custodians need to generalize their demographic information further for longitudinal data sets.</p
A Systematic Review of Re-Identification Attacks on Health Data
Privacy legislation in most jurisdictions allows the disclosure of health data for secondary purposes without patient consent if it is de-identified. Some recent articles in the medical, legal, and computer science literature have argued that de-identification methods do not provide sufficient protection because they are easy to reverse. Should this be the case, it would have significant and important implications on how health information is disclosed, including: (a) potentially limiting its availability for secondary purposes such as research, and (b) resulting in more identifiable health information being disclosed. Our objectives in this systematic review were to: (a) characterize known re-identification attacks on health data and contrast that to re-identification attacks on other kinds of data, (b) compute the overall proportion of records that have been correctly re-identified in these attacks, and (c) assess whether these demonstrate weaknesses in current de-identification methods.Searches were conducted in IEEE Xplore, ACM Digital Library, and PubMed. After screening, fourteen eligible articles representing distinct attacks were identified. On average, approximately a quarter of the records were re-identified across all studies (0.26 with 95% CI 0.046-0.478) and 0.34 for attacks on health data (95% CI 0-0.744). There was considerable uncertainty around the proportions as evidenced by the wide confidence intervals, and the mean proportion of records re-identified was sensitive to unpublished studies. Two of fourteen attacks were performed with data that was de-identified using existing standards. Only one of these attacks was on health data, which resulted in a success rate of 0.00013.The current evidence shows a high re-identification rate but is dominated by small-scale studies on data that was not de-identified according to existing standards. This evidence is insufficient to draw conclusions about the efficacy of de-identification methods