84 research outputs found

    Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity.

    Get PDF
    The origin of sinoatrial node (SAN) pacemaker activity in the heart is controversial. The leading candidates are diastolic depolarization by "funny" current (If) through HCN4 channels (the "Membrane Clock" hypothesis), depolarization by cardiac Na-Ca exchange (NCX1) in response to intracellular Ca cycling (the "Calcium Clock" hypothesis), and a combination of the two ("Coupled Clock"). To address this controversy, we used Cre/loxP technology to generate atrial-specific NCX1 KO mice. NCX1 protein was undetectable in KO atrial tissue, including the SAN. Surface ECG and intracardiac electrograms showed no atrial depolarization and a slow junctional escape rhythm in KO that responded appropriately to β-adrenergic and muscarinic stimulation. Although KO atria were quiescent they could be stimulated by external pacing suggesting that electrical coupling between cells remained intact. Despite normal electrophysiological properties of If in isolated patch clamped KO SAN cells, pacemaker activity was absent. Recurring Ca sparks were present in all KO SAN cells, suggesting that Ca cycling persists but is uncoupled from the sarcolemma. We conclude that NCX1 is required for normal pacemaker activity in murine SAN

    Clinical Features of COVID-19 Patients at Udayana University Hospital During First Three Months of the COVID-19 Pandemic

    Get PDF
    COVID-19 exhibits a wide variety of symptoms, ranging from mild, moderate, severe, and critical respiratory dysfunctions up to death. Therefore, this study aimed to examine the demographic, clinical, and laboratory profile of COVID-19 patients admitted to Udayana University Hospital, Bali, during the first three months of the pandemic. Data were collected from the electronic medical records of 236 patients hospitalized from April to June 2020. The samples had a mean age of 40 years old, and they consisted of 58.50% male. Based on the records, the common clinical characteristics included fever (52.5%) and cough (47.5%), followed by less common traits, such as sore throat (18.2%), dyspnea (10.2%), flu (8.9%), and headache (3.8%). Laboratory results during admission showed an average lymphocyte count of 2.16 ± 2.19 × 109 cells/L and a neutrophil- lymphocyte ratio of 3.02 ± 3.41. The majority of patients were private corporation employees (30.51%), followed by migrant workers (21.19%). Furthermore, a fatality rate of 1.69% was recorded in the study hospital. These results were expected to provide epidemiological knowledge of COVID-19 patients, which can help clinicians to anticipate possible outcomes during treatment

    Mitochondrial Ca(2+) uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity.

    Get PDF
    Tightly regulated Ca(2+) homeostasis is a prerequisite for proper cardiac function. To dissect the regulatory network of cardiac Ca(2+) handling, we performed a chemical suppressor screen on zebrafish tremblor embryos, which suffer from Ca(2+) extrusion defects. Efsevin was identified based on its potent activity to restore coordinated contractions in tremblor. We show that efsevin binds to VDAC2, potentiates mitochondrial Ca(2+) uptake and accelerates the transfer of Ca(2+) from intracellular stores into mitochondria. In cardiomyocytes, efsevin restricts the temporal and spatial boundaries of Ca(2+) sparks and thereby inhibits Ca(2+) overload-induced erratic Ca(2+) waves and irregular contractions. We further show that overexpression of VDAC2 recapitulates the suppressive effect of efsevin on tremblor embryos whereas VDAC2 deficiency attenuates efsevin\u27s rescue effect and that VDAC2 functions synergistically with MCU to suppress cardiac fibrillation in tremblor. Together, these findings demonstrate a critical modulatory role for VDAC2-dependent mitochondrial Ca(2+) uptake in the regulation of cardiac rhythmicity

    Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer

    Get PDF
    Division of Medical Oncology and Surgical Oncolog

    Speech Communication

    Get PDF
    Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NS07040)National Institutes of Health (Grant 5 R01 NS04332)National Science Foundation (Grant 1ST 80-17599)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0290

    Speech Communication

    Get PDF
    Contains table of contents for Part IV, table of contents for Section 1 and reports on five research projects.Apple Computer, Inc.C.J. Lebel FellowshipNational Institutes of Health (Grant T32-NS07040)National Institutes of Health (Grant R01-NS04332)National Institutes of Health (Grant R01-NS21183)National Institutes of Health (Grant P01-NS23734)U.S. Navy / Naval Electronic Systems Command (Contract N00039-85-C-0254)U.S. Navy - Office of Naval Research (Contract N00014-82-K-0727

    Speech Communication

    Get PDF
    Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NSO7040)National Institutes of Health (Grant 5 R01 NS04332)National Institutes of Health (Grant 5 R01 NS21183)National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 1 PO1-NS23734)National Science Foundation (Grant BNS 8418733)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0290)National Institutes of Health (Grant RO1-NS21183), subcontract with Boston UniversityNational Institutes of Health (Grant 1 PO1-NS23734), subcontract with the Massachusetts Eye and Ear Infirmar
    corecore