47 research outputs found

    Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28

    Get PDF
    An alkalitolerant fungus, Aspergillus fumigatus strain MA28 produced significant amounts of cellulase-free xylanase when grown on a variety of agro-wastes. Wheat bran as the sole carbon source supported higher xylanase production (8,450 U/L) than xylan (7,500 U/L). Soybean meal was observed to be the best nitrogen source for xylanase production (9,000 U/L). Optimum medium pH for xylanase production was 8 (9,800 U/L), though, significant quantities of the enzyme was also produced at pH 7 (8,500 U/L), 9 (8,200 U/L) and 10 (4,600 U/L). The xylanase was purified by ammonium sulphate precipitation and carboxymethyl cellulose chromatography, and was found to have a molecular weight of 14.4 kDa with a Vmax of 980 Όmol/min/mg of protein and a Km of approximately 4.9 mg/mL. The optimum temperature and pH for enzyme activity was 50 °C and pH 8, respectively. However, the enzyme also showed substantial residual activity at 60–70 °C (53–75%) and at alkaline pH 8–9 (56–88%)

    Simple and efficient expression of Agaricus meleagris pyranose dehydrogenase in Pichia pastoris

    Get PDF
    Pyranose dehydrogenase (PDH) is a fungal flavin-dependent sugar oxidoreductase that is highly interesting for applications in organic synthesis or electrochemistry. The low expression levels of the filamentous fungus Agaricus meleagris as well as the demand for engineered PDH make heterologous expression necessary. Recently, Aspergillus species were described to efficiently secrete recombinant PDH. Here, we evaluate recombinant protein production with expression hosts more suitable for genetic engineering. Expression in Escherichia coli resulted in no soluble or active PDH. Heterologous expression in the methylotrophic yeast Pichia pastoris was investigated using two different signal sequences as well as a codon-optimized sequence. A 96-well plate activity screening for transformants of all constructs was established and the best expressing clone was used for large-scale production in 50-L scale, which gave a volumetric yield of 223 mg L−1 PDH or 1,330 U L−1 d−1 in space–time yield. Purification yielded 13.4 g of pure enzyme representing 95.8% of the initial activity. The hyperglycosylated recombinant enzyme had a 20% lower specific activity than the native enzyme; however, the kinetic properties were essentially identical. This study demonstrates the successful expression of PDH in the eukaryotic host organism P. pastoris paving the way for protein engineering. Additionally, the feasibility of large-scale production of the enzyme with this expression system together with a simplified purification scheme for easy high-yield purification is shown

    Complex X chromosome rearrangement associated with multiorgan autoimmunity

    Get PDF
    BACKGROUND: Turner syndrome, a congenital condition that affects 1/2,500 births, results from absence or structural alteration of the second sex chromosome. Turner syndrome is usually associated with short stature, gonadal dysgenesis and variable dysmorphic features. The classical 45,X karyotype accounts approximately for half of all patients, the remainder exhibit mosaicism or structural abnormalities of the X chromosome. However, complex intra-X chromosomal rearrangements involving more than three breakpoints are extremely rare. RESULTS: We present a unique case of a novel complex X chromosome rearrangement in a young female patient presenting successively a wide range of autoimmune diseases including insulin dependent diabetes mellitus, Hashimoto's thyroiditis, celiac disease, anaemia perniciosa, possible inner ear disease and severe hair loss. For the genetic evaluation, conventional cytogenetic analysis and FISH with different X specific probes were initially performed. The complexity of these results and the variety of autoimmune problems of the patient prompted us to identify the exact composition and breakpoints of the rearranged X as well as methylation status of the X chromosomes. The high resolution array-CGH (assembly GRCh37/hg19) detected single copy for the whole chromosome X short arm. Two different sized segments of Xq arm were present in three copies: one large size of 80,3 Mb from Xq11.1 to Xq27.3 region and another smaller (11,1 Mb) from Xq27.3 to Xq28 region. An 1,6 Mb Xq27.3 region of the long arm was present in two copies. Southern blot analysis identified a skewed X inactivation with approximately 70:30 % ratios of methylated/unmethylated fragments. The G-band and FISH patterns of the rearranged X suggested the aspect of a restructured i(Xq) chromosome which was shattered and fortuitously repaired. The X-STR genotype analysis of the family detected that the patient inherited intact maternal X chromosome and a rearranged paternal X chromosome. The multiple Xq breakages and fusions as well as inverted duplication would have been expected to cause a severe Turner phenotype. However, the patient lacks many of the classic somatic features of Turner syndrome, instead she presented multiorgan autoimmune diseases. CONCLUSIONS: The clinical data of the presented patient suggest that fragmentation of the i(Xq) chromosome elevates the risk of autoimmune diseases

    Optimization of xylanase production by filamentous fungi in solid state fermentation and scale-up to horizontal tube bioreactor

    Get PDF
    Five microorganisms, namely Aspergillus niger CECT 2700, A. niger CECT 2915, A. niger CECT 2088, Aspergillus terreus CECT 2808, and Rhizopus stolonifer CECT 2344, were grown on corncob to produce cell wall polysaccharide-degrading enzymes, mainly xylanases, by solid-state fermentation (SSF). A. niger CECT 2700 produced the highest amount of xylanases of 504±7 U/g dry corncob (dcc) after 3 days of fermentation. The optimization of the culture broth (5.0 g/L NaNO3, 1.3 g/L (NH4)2SO4, 4.5 g/L KH2PO4, and 3 g/L yeast extract) and operational conditions (5 g of bed loading, using an initial substrate to moistening medium of 1:3.6 (w/v)) allowed increasing the predicted maximal xylanase activity up to 2,452.7 U/g dcc. However, different pretreatments of materials, including destarching, autoclaving, microwave, and alkaline treatments, were detrimental. Finally, the process was successfully established in a laboratory-scale horizontal tube biore- actor, achieving the highest xylanase activity (2,926 U/g dcc) at a flow rate of 0.2 L/min. The result showed an overall 5.8-fold increase in xylanase activity after optimization of culture media, operational conditions, and scale-up.We are grateful to the Spanish Ministry of Science and Innovation for the financial support of this work (project CTQ2011-28967), which has partial financial support from the FEDER funds of the European Union; to the Leonardo da Vinci Programme for founding the stay of Felisbela Oliveira in Vigo University; to MAEC-AECID (Spanish Government) for the financial support for Perez-Bibbins, B. and to Spanish Ministry of Education, Culture and Sports for Perez-Rodriguez's FPU; and to Solla E. and Mendez J. (CACTI-University of Vigo) for their excellent technical assistance in microscopy

    High-level expression of Lactobacillus beta-galactosidases in Lactococcus lactis using the food-grade, nisin-controlled expression system NICE

    No full text
    In this work the overlapping genes (lacL and lacM) encoding heterodimeric beta-galactosidases from Lactobacillus reuteri, Lb. acidophilus, Lb. sakei, and Lb. plantarum were cloned into two different nisin-controlled expression (NICE) vectors and expressed using Lactococcus lactis NZ9000 and NZ3900 as hosts. The lacL gene, encoding the large subunit of the beta-galactosidases, was fused translationally downstream of the nisin-inducible promoter nisA. Chloramphenicol was employed as selection marker for the standard system using L. lactis NZ9000, whereas lactose utilization based on the complementation of the lacF gene was used as a dominant selection marker for the food-grade system employing L. lactis NZ3900. Comparison of the standard and the food-grade expression system, differing only in their selection markers, gave considerable differences in volumetric beta-galactosidase activity, ranging from 1.17 to 14 kU/L of fermentation broth, depending on both the origin of the lacLM genes and the selection marker used. The occurrence of codons less frequently used by L. lactis especially at the beginning of the lacL gene could be an explanation for the significant differences between the expression levels of lacLM from different origins, while plasmid stability might cause the difference obtained when employing the different selection markers

    Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci.

    No full text
    Synaptopathies constitute a group of neurological diseases including autism spectrum disorders (ASD) and intellectual disability (ID). They have been associated with mutations in genes encoding proteins important for the formation and stabilization of synapses, such as SHANK1-3. Loss-of-function mutations in the SHANK genes have been identified in individuals with ASD and ID suggesting that other factors modify the neurological phenotype. We report a boy with severe ID, behavioral anomalies, and language impairment who carries a balanced de novo triple translocation 46,XY,t(11;17;19)(q13.3;q25.1;q13.42). The 11q13.3 breakpoint was found to disrupt the SHANK2 gene. The patient also carries copy number variations at 15q13.3 and 10q22.11 encompassing ARHGAP11B and two synaptic genes. The CHRNA7 gene encoding alpha7-nicotinic acetylcholine receptor subunit and the GPRIN2 gene encoding G-protein-regulated inducer of neurite growth 2 were duplicated. Co-occurrence of a de novo SHANK2 mutation and a CHRNA7 duplication in two reported patients with ASD and ID as well as in the patient with t(11;17;19), severe ID and behavior problems suggests convergence of these genes on a common synaptic pathway. Our results strengthen the oligogenic inheritance model and highlight the presence of a large effect mutation and modifier genes collectively determining phenotypic expression of the synaptopathy
    corecore