39 research outputs found

    The functional role of temperate forest understorey vegetation in a changing world

    Get PDF
    Temperate forests cover 16% of the global forest area. Within these forests, the understorey is an important biodiversity reservoir that can influence ecosystem processes and functions in multiple ways. However, we still lack a thorough understanding of the relative importance of the understorey for temperate forest functioning. As a result, understoreys are often ignored during assessments of forest functioning and changes thereof under global change. We here compiled studies that quantify the relative importance of the understorey for temperate forest functioning, focussing on litter production, nutrient cycling, evapotranspiration, tree regeneration, pollination and pathogen dynamics. We describe the mechanisms driving understorey functioning and develop a conceptual framework synthesizing possible effects of multiple global change drivers on understorey-mediated forest ecosystem functioning. Our review illustrates that the understorey's contribution to temperate forest functioning is significant but varies depending on the ecosystem function and the environmental context, and more importantly, the characteristics of the overstorey. To predict changes in understorey functioning and its relative importance for temperate forest functioning under global change, we argue that a simultaneous investigation of both overstorey and understorey functional responses to global change will be crucial. Our review shows that such studies are still very scarce, only available for a limited set of ecosystem functions and limited to quantification, providing little data to forecast functional responses to global change

    Die Stoffwechselwirkungen der SchilddrĂŒsenhormone

    Get PDF

    Analysis of Cluster Structures by Different Similarity Measures

    Full text link

    Lightwave analog links for LHC detector frontends

    Full text link
    The requirements on optical links for transferring analog and digital signals from the detector front-ends to the readout electronics at future high-luminosity colliders are reviewed. The advantages of external modulation techniques are discussed. An outline is given of the the R&D programme recently started at CERN by a collaboration involving high-energy physics institutes, optoelectronics research laboratories and industry, in order to develop electro-optic intensity modulator arrays, particularly for analogue applications, and to investigate the feasibility of volume production. The design of multichannel demonstrators in lithium niobate and III-V semiconductor technology is described. Preliminary results of the performance measurements are presented
    corecore