2,565 research outputs found

    The Nature of Thermopower in Bipolar Semiconductors

    Full text link
    The thermoemf in bipolar semiconductors is calculated. It is shown that it is necessary to take into account the nonequilibrium distribution of electron and hole concentrations (Fermi quasilevels of the electrons and holes). We find that electron and hole electric conductivities of contacts of semiconductor samples with connecting wires make a substantial contribution to thermoemf.Comment: 17 pages, RevTeX 3.0 macro packag

    Shot noise of Coulomb drag current

    Full text link
    We work out a theory of shot noise in a special case. This is a noise of the Coulomb drag current excited under the ballistic transport regime in a one-dimensional nanowire by a ballistic non-Ohmic current in a nearby parallel nanowire. We predict sharp oscillation of the noise power as a function of gate voltage or the chemical potential of electrons. We also study dependence of the noise on the voltage V across the driving wire. For relatively large values of V the noise power is proportional to V^2.Comment: 9 pages, 2 figure

    Quantum and Braided Linear Algebra

    Full text link
    Quantum matrices A(R)A(R) are known for every RR matrix obeying the Quantum Yang-Baxter Equations. It is also known that these act on `vectors' given by the corresponding Zamalodchikov algebra. We develop this interpretation in detail, distinguishing between two forms of this algebra, V(R)V(R) (vectors) and V∗(R)V^*(R) (covectors). A(R)\to V(R_{21})\tens V^*(R) is an algebra homomorphism (i.e. quantum matrices are realized by the tensor product of a quantum vector with a quantum covector), while the inner product of a quantum covector with a quantum vector transforms as a scaler. We show that if V(R)V(R) and V∗(R)V^*(R) are endowed with the necessary braid statistics Ψ\Psi then their braided tensor-product V(R)\und\tens V^*(R) is a realization of the braided matrices B(R)B(R) introduced previously, while their inner product leads to an invariant quantum trace. Introducing braid statistics in this way leads to a fully covariant quantum (braided) linear algebra. The braided groups obtained from B(R)B(R) act on themselves by conjugation in a way impossible for the quantum groups obtained from A(R)A(R).Comment: 27 page
    • …
    corecore