7 research outputs found

    Duplex PCR To Differentiate between Mycoplasma synoviae and Mycoplasma gallisepticum on the Basis of Conserved Species-Specific Sequences of Their Hemagglutinin Genes

    No full text
    We developed a duplex PCR assay targeting the hemagglutinin multigene families, vlhA and pMGA, of Mycoplasma synoviae and Mycoplasma gallisepticum, respectively. The assay proved to be specific and sensitive enough to justify its use for the simultaneous detection of the two major avian mycoplasma species from field isolates

    comK Prophage Junction Fragments as Markers for Listeria monocytogenes Genotypes Unique to Individual Meat and Poultry Processing Plants and a Model for Rapid Niche-Specific Adaptation, Biofilm Formation, and Persistence ▿ †

    No full text
    Different strains of Listeria monocytogenes are well known to persist in individual food processing plants and to contaminate foods for many years; however, the specific genotypic and phenotypic mechanisms responsible for persistence of these unique strains remain largely unknown. Based on sequences in comK prophage junction fragments, different strains of epidemic clones (ECs), which included ECII, ECIII, and ECV, were identified and shown to be specific to individual meat and poultry processing plants. The comK prophage-containing strains showed significantly higher cell densities after incubation at 30°C for 48 h on meat and poultry food-conditioning films than did strains lacking the comK prophage (P < 0.05). Overall, the type of strain, the type of conditioning film, and the interaction between the two were all highly significant (P < 0.001). Recombination analysis indicated that the comK prophage junction fragments in these strains had evolved due to extensive recombination. Based on the results of the present study, we propose a novel model in which the concept of defective comK prophage was replaced with the rapid adaptation island (RAI). Genes within the RAI were recharacterized as “adaptons,” as these genes may allow L. monocytogenes to rapidly adapt to different food processing facilities and foods. If confirmed, the model presented would help explain Listeria's rapid niche adaptation, biofilm formation, persistence, and subsequent transmission to foods. Also, comK prophage junction fragment sequences may permit accurate tracking of persistent strains back to and within individual food processing operations and thus allow the design of more effective intervention strategies to reduce contamination and enhance food safety

    Listeria monocytogenes and the Genus Listeria

    No full text

    Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes

    No full text
    corecore