21 research outputs found

    Semaglutide Effects on Cardiovascular Outcomes in People With Overweight or Obesity (SELECT) rationale and design

    Get PDF
    Cardiovascular disease (CVD) is a major cause of morbidity and mortality. Although it has been widely appreciated that obesity is a major risk factor for CVD, treatments that produce effective, durable weight loss and the impact of weight reduction in reducing cardiovascular risk have been elusive. Instead, progress in CVD risk reduction has been achieved through medications indicated for controlling lipids, hyperglycemia, blood pressure, heart failure, inflammation, and/or thrombosis. Obesity has been implicated as promoting all these issues, suggesting that sustained, effective weight loss may have independent cardiovascular benefit. GLP-1 receptor agonists (RAs) reduce weight, improve glycemia, decrease cardiovascular events in those with diabetes, and may have additional cardioprotective effects. The GLP-1 RA semaglutide is in phase 3 studies as a medication for obesity treatment at a dose of 2.4 mg subcutaneously (s.c.) once weekly. Semaglutide Effects on Heart Disease and Stroke in Patients with Overweight or Obesity (SELECT) is a randomized, double-blind, parallel-group trial testing if semaglutide 2.4 mg subcutaneously once weekly is superior to placebo when added to standard of care for preventing major adverse cardiovascular events in patients with established CVD and overweight or obesity but without diabetes. SELECT is the first cardiovascular outcomes trial to evaluate superiority in major adverse cardiovascular events reduction for an antiobesity medication in such a population. As such, SELECT has the potential for advancing new approaches to CVD risk reduction while targeting obesity

    Surgery and risk for multiple sclerosis: a systematic review and meta-analysis of case–control studies

    Full text link

    Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report

    No full text
    The Committee of the European-Concerted Action for Multiple Sclerosis (Charcot Foundation) organised five workshops to discuss CSF analytical standards in the diagnosis of multiple sclerosis. This consensus report from 12 European countries summarises the results of those workshops. It is hoped that neurologists will confer with their colleagues in clinical chemistry to arrange the best possible local practice. The most sensitive method for the detection of oligoclonal immunoglobulin bands is isoelectric focusing. The same amounts of IgG in parallel CSF and serum samples are used and oligoclonal bands are revealed with IgG specific antibody staining. Ah laboratories performing isoelectric focusing should check their technique at least annually using ''blind'' standards for the five different CSF and serum patterns. Quantitative measurements of IgG production in the CNS are less sensitive than isoelectric focusing. The preferred method for detection of blood-CSF barrier dysfunction is the albumin quotient. The CSF albumin or total protein concentrations are less satisfactory. These results must be interpreted with reference to the age of the patient and the local method of determination. Cells should be counted. The normal value is no more than 4 cells/mu l. Among evolving optional tests, measurement of the combined local synthesis of antibodies against measles, rubella, and/or varicella tester could represent a significant advance if it offers higher specificity (not sensitivity) for identifying chronic rather than acute inflammation. Other tests that may have useful correlations with clinical indices include those for oligoclonal free light chains, IgM, IgA, or myelin basic protein concentrations
    corecore