44 research outputs found
Radiation damage in high-resistivity silicon solar cells
High-resistivity silicon solar cells exhibit reduced radiation damage when light is incident on the gridded back surface. Under back illumination, radiation damage decreases as cell resistivity increases; under front illumination, radiation damage increases as cell resistivity increases. Thin back-illuminated cells outperform conventional 10 omega cm 50 and 200 micron cells at low 1-MeV electron fluences. However, at higher fluences, the conventional cells exhibit superior radiation resistance. This is attributed to the low BOL diffusion lengths observed in the thin, sack-illuminated cell. These results are discussed in terms of injected charge distributions, electric fields in the cell base, and the effects of a dominant boron-oxygen defect
A comparative study of p(+)n and n(+)p InP solar cells made by a closed ampoule diffusion
The purpose was to demonstrate the possibility of fabricating thermally diffused p(+)n InP solar cells having high open-circuit voltage without sacrificing the short circuit current. The p(+)n junctions were formed by closed-ampoule diffusion of Cd through a 3 to 5 nm thick anodic or chemical phosphorus-rich oxide cap layer grown on n-InP:S Czochralski LEC grown substrates. For solar cells made by thermal diffusion the p(+)n configuration is expected to have a higher efficiency than the n(+)p configuration. It is predicted that the AM0, BOL efficiencies approaching 19 percent should be readily achieved providing that good ohmic front contacts could be realized on the p(+) emitters of thickness lower than 1 micron
Performance of high resistivity n+pp+ silicon solar cells under 1 MeV electron irradiation
High resistivity (1250 and 84 ohm-cm) n(+)pp(+) silicon solar cells were irradiated and their performance evaluated as a function of fluence. The greatest degradation in power occurred for the higher resistivity cell. The data were analyzed under open circuit conditions, and the components of V sub oc determined as a function of fluence. It was found that the voltage contributions from the front and back junctions decreased while the base component (V sub B) increased with fluence. The anomalous behavior of V sub B was attributed to an increase in the base minority carrier gradient with fluence. An argument that the increased power degradation in the 1250 ohm-cm cells was attributable to an increased voltage drop in the base is presented. Diffusion lengths calculated under high injection conditions were significantly greater than those determined under low injection. This was attributed to a saturation of recombination centers under high injection conditions
Radiation damage in front and back illuminated high resistivity silicon solar cells
Radiation induced degradation, in front and back illuminated 84 and 1250 ohm-cm n+pp+ silicon solar cells, was determined and cell performance interpreted using calculated optically injected charge distributions and cell voltage components. The 84 ohm-cm cell degraded less when illuminated from the front or n+ side compared to that when illuminated from the back or p+ side. On the other hand, the 1250 ohm-cm cell degraded less when back illuminated. It is concluded that, in addition to the usual mechanisms leading to decreased collection efficiencies, loss of conductivity modulation is a major cause of radiation damage in high resistivity silicon solar cells. These results suggest that radiation damage to high resistivity n+pp+ cells can be decreased by increasing cell collection efficiency and illuminating the cells from the p+ side
Progress in p(+)n InP solar cells fabricated by thermal diffusion
The performance results of our most recently thermally diffused InP solar cells using the p(+)n (Cd,S) structures are presented. We have succeeded in fabricating cells with measured AMO, 25 C V(sub oc) exceeding 880 mV (bare cells) which to the best of our knowledge is higher than previously reported V(sub oc) values for any InP homojunction solar cells. The cells were fabricated by thinning the emitter, after Au-Zn front contacting, from its initial thickness of about 4.5 microns to about 0.6 microns. After thinning, the exposed surface of the emitter was passivated by a thin (approximately 50A) P-rich oxide. Based on the measured EQY and J(sub sc)-V(sub oc) characteristics of our experimental high V(sub oc) p(+)n InP solar cells, we project that reducing the emitter thickness to 0.3 microns, using an optimized AR coating, maintaining the surface hole concentration of 3 x 10(exp 18)cm(sup -3), reducing the grid shadowing from actual 10.55 percent to 6 percent and reducing the contact resistance will increase the actual measured 12.57 percent AMO 25 C efficiency to about 20.1 percent. By using our state-of-the-art p(+)n structures which have a surface hole concentration of 4 x 10(exp 18)cm(sup -3) and slightly improving the front surface passivation, an even higher practically achievable AMO, 25 C efficiency of 21.3 percent is projected
Osteointegration of soft tissue grafts within the bone tunnels in anterior cruciate ligament reconstruction can be enhanced
Anterior cruciate ligament reconstruction with a soft tissue autograft (hamstring autograft) has grown in popularity in the last 10 years. However, the issues of a relatively long healing time and an inferior histological healing result in terms of Sharpey-like fibers connection in soft tissue grafts are still unsolved. To obtain a promising outcome in the long run, prompt osteointegration of the tendon graft within the bone tunnel is essential. In recent decades, numerous methods have been reported to enhance osteointegration of soft tissue graft in the bone tunnel. In this article, we review the current literature in this research area, mainly focusing on strategies applied to the local bone tunnel environment. Biological strategies such as stem cell and gene transfer technology, as well as the local application of specific growth factors have been reported to yield exciting results. The use of biological bone substitute and physical stimulation also obtained promising results. Artificially engineered tissue has promise as a solution to the problem of donor site morbidity. Despite these encouraging results, the current available evidence is still experimental. Further clinical studies in terms of randomized control trial in the future should be conducted to extrapolate these basic science study findings into clinical practice. © 2009 Springer-Verlag.postprin
Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner
High tibial osteotomy (HTO) is a surgical procedure used to change the mechanical weight-bearing axis and alter the loads carried through the knee. Conventional indications for HTO are medial compartment osteoarthritis and varus malalignment of the knee causing pain and dysfunction. Traditionally, knee instability associated with varus thrust has been considered a contraindication. However, today the indications include patients with chronic ligament deficiencies and malalignment, because an HTO procedure can change not only the coronal but also the sagittal plane of the knee. The sagittal plane has generally been ignored in HTO literature, but its modification has a significant impact on biomechanics and joint stability. Indeed, decreased posterior tibial slope causes posterior tibia translation and helps the anterior cruciate ligament (ACL)-deficient knee. Vice versa, increased tibial slope causes anterior tibia translation and helps the posterior cruciate ligament (PCL)-deficient knee. A review of literature shows that soft tissue procedures alone are often unsatisfactory for chronic posterior instability if alignment is not corrected. Since limb alignment is the most important factor to consider in lower limb reconstructive surgery, diagnosis and treatment of limb malalignment should not be ignored in management of chronic ligamentous instabilities. This paper reviews the effects of chronic posterior instability and tibial slope alteration on knee and soft tissues, in addition to planning and surgical technique for chronic posterior and posterolateral instability with HTO