1,243 research outputs found

    Magnetic properties of Hydrogenated Li and Co doped ZnO nanoparticles

    Full text link
    The effect of hydrogenation on magnetic properties of Zn0.85Co0.05Li0.10O nanoparticles is presented. It was found that the sample hydrided at room temperature (RT) showed weak ferromagnetism (FM) while that hydrided at 400oC showed robust ferromagnetism at room temperature. In both cases reheating the sample at 400oC in air converts it back into paramagnetic state (P) completely. The characterization of samples by X-ray and electron diffraction (ED) showed that room temperature ferromagnetism observed in the samples hydrogenated at RT is intrinsic in nature whereas that observed in the samples hydrogenated at 400oC is partly due to the cobalt metal clusters.Comment: 10 pages, 3 figure

    Influence of system parameters on the hysteresis characteristics of a horizontal Rijke tube

    Get PDF
    The influence of system parameters such as heater power, heater location and mass flow rate on the hysteresis characteristics of a horizontal Rijke tube is presented in this paper. It is observed that a hysteresis zone is present for all the mass flow rates considered in the present study. A power law relation is established between the non-dimensional hysteresis width and the Strouhal number, defined as the ratio between convective time scale and acoustic time scale. The transition to instability in a horizontal Rijke tube is found to be subcritical in all the experiments performed in this study. When heater location is chosen as the control parameter, period-2 oscillations are found for specific values of mass flow rate and heater power

    Strong clustering of non-interacting, passive sliders driven by a Kardar-Parisi-Zhang surface

    Full text link
    We study the clustering of passive, non-interacting particles moving under the influence of a fluctuating field and random noise, in one dimension. The fluctuating field in our case is provided by a surface governed by the Kardar-Parisi-Zhang (KPZ) equation and the sliding particles follow the local surface slope. As the KPZ equation can be mapped to the noisy Burgers equation, the problem translates to that of passive scalars in a Burgers fluid. We study the case of particles moving in the same direction as the surface, equivalent to advection in fluid language. Monte-Carlo simulations on a discrete lattice model reveal extreme clustering of the passive particles. The resulting Strong Clustering State is defined using the scaling properties of the two point density-density correlation function. Our simulations show that the state is robust against changing the ratio of update speeds of the surface and particles. In the equilibrium limit of a stationary surface and finite noise, one obtains the Sinai model for random walkers on a random landscape. In this limit, we obtain analytic results which allow closed form expressions to be found for the quantities of interest. Surprisingly, these results for the equilibrium problem show good agreement with the results in the non-equilibrium regime.Comment: 14 pages, 9 figure

    Room temperature Ferromagnetism in Th1-xFexO2-d (x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25) nanoparticles

    Full text link
    Nanocrystalline (Th1-xFex)O2-d particles with different Fe concentrations (x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25) have been prepared by a gel combustion method. Rietveld refinement analyses of X-ray diffraction data revealed the formation of an impurity free cubic type Th1-xFexO2-d structure up to x = 0.20. This observation is further confirmed from the detailed studies conducted on 10 at. percent Fe doped ThO2 using high-resolution transmission electron microscopy (HRTEM) imaging and indexing of the selected-area electron diffraction (SAED) patterns. DC Magnetization studies as a function field indicate that they are ferromagnetic with Curie temperature (Tc) well above room temperature.Comment: 10 pages, 5 figure

    Theory of Transition Temperature of Magnetic Double Perovskites

    Full text link
    We formulate a theory of double perovskite coumpounds such as Sr2_2FeReO6_6 and Sr2_2FeMoO6_6 which have attracted recent attention for their possible uses as spin valves and sources of spin polarized electrons. We solve the theory in the dynamical mean field approximation to find the magnetic transition temperature TcT_c. We find that TcT_c is determined by a subtle interplay between carrier density and the Fe-Mo/Re site energy difference, and that the non-Fe same-sublattice hopping acts to reduce TcT_c. Our results suggest that presently existing materials do not optimize TcT_c
    • …
    corecore