4 research outputs found

    Ti-Zr-Si-Nb nanocrystalline alloys and metallic glasses: Assessment on the structure, thermal stability, corrosion and mechanical properties

    Get PDF
    The development of novel Ti-based amorphous or \u3b2-phase nanostructured metallic materials could have significant benefits for implant applications, due to improved corrosion and mechanical characteristics (lower Young's modulus, better wear performance, improved fracture toughness) in comparison to the standardized \u3b1+\u3b2 titanium alloys. Moreover, the devitrification phenomenon, occurring during heating, could contribute to lower input power during additive manufacturing technologies. Ti-based alloy ribbons were obtained by melt-spinning, considering the ultra-fast cooling rates this method can provide. The titanium alloys contain in various proportions Zr, Nb, and Si (Ti60Zr10Si15Nb15, Ti64Zr10Si15Nb11, Ti56Zr10Si15Nb19) in various proportions. These elements were chosen due to their reported biological safety, as in the case of Zr and Nb, and the metallic glass-forming ability and biocompatibility of Si. The morphology and chemical composition were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy, while the structural features (crystallinity, phase attribution after devitrification (after heat treatment)) were assessed by X-ray diffraction. Some of the mechanical properties (hardness, Young's modulus) were assessed by instrumented indentation. The thermal stability and crystallization temperatures were measured by differential thermal analysis. High-intensity exothermal peaks were observed during heating of melt-spun ribbons. The corrosion behavior was assessed by electrocorrosion tests. The results show the potential of these alloys to be used as materials for biomedical applications

    The influence of powder particle and grain size on parts manufacturing by powder bed fusion

    No full text
    Nanostructured powder materials, or powders with increased amorphous ratio, can potentially lead to increased productivity during powder bed fusion, due to the hypothesis that nanostructured raw materials can be layer-sintered with lower specific energy, and consequently lower processing times when compared to commercial powders. Sintering of such materials can potentially be done faster, as compared to conventional powders. In addition, using nanostructured powders, or powders with high amorphous content, or even nanometric (nano-sized particles) powders, can result in higher density and hardness values of the sintered part, using the same process parameters. The main issue with nano-sized particles is their loss of flowability, which could be overcome by controlling the particle shape during manufacturing. This work presents our results concerning the manufacturing and characterization of titanium alloy powders, with potential use in additive manufacturing. The powders were manufactured using severe plastic deformation by mechanical milling from commercially available powders, with various rotation speeds, ball diameters, and milling periods, in order to obtain micrometric particles, but with nanometric or high amorphous content structures. The powders were further analyzed in terms of morphology, structure, and chemical composition

    Metastable Al\u2013Si\u2013Ni alloys for additive manufacturing: Structural stability and energy release during heating

    No full text
    Rapid solidification with high cooling rates of metal alloys determines both the improvement of mechanical properties, due to the finishing of the structure, as well as obtaining metastable structures in the form of supersaturated or amorphous/nano solid solutions, which could potentially confer the material outstanding properties. It is of particular interest to use the energies released during the heating stage for these materials, due to the potentially lower input energy required to melt/fuse these materials. This phenomenon could add to the development and diversification of additive manufacturing technologies. The paper presents results concerning the structural development and phase transformation of metastable structures from Al\u2013Si\u2013Ni-based alloys, obtained by melt spinning and atomization techniques. It was observed that the structural transformations occurring during the heating process, starting from metastable structures, generate significant amounts of energy. This is of practical importance in the use of metallic powders in additive manufacturing technology, due to potentially reduced energy input

    Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges

    No full text
    corecore