462 research outputs found

    All-Optical Depletion of Dark Excitons from a Semiconductor Quantum Dot

    Get PDF
    Semiconductor quantum dots are considered to be the leading venue for fabricating on-demand sources of single photons. However, the generation of long-lived dark excitons imposes significant limits on the efficiency of these sources. We demonstrate a technique that optically pumps the dark exciton population and converts it to a bright exciton population, using intermediate excited biexciton states. We show experimentally that our method considerably reduces the DE population while doubling the triggered bright exciton emission, approaching thereby near-unit fidelity of quantum dot depletion.Comment: 5 pages, 3 figure

    Determinisitic Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

    Full text link
    We demonstrate that the quantum dot-confined dark exciton forms a long-lived integer spin solid state qubit which can be deterministically on-demand initiated in a pure state by one optical pulse. Moreover, we show that this qubit can be fully controlled using short optical pulses, which are several orders of magnitude shorter than the life and coherence times of the qubit. Our demonstrations do not require an externally applied magnetic field and they establish that the quantum dot-confined dark exciton forms an excellent solid state matter qubit with some advantages over the half-integer spin qubits such as the confined electron and hole, separately. Since quantum dots are semiconductor nanostructures that allow integration of electronic and photonic components, the dark exciton may have important implications on implementations of quantum technologies consisting of semiconductor qubits.Comment: Added two authors, minor edits to figure captions, expanded discussion of dark exciton eigenstate

    Evolutionary control: Targeted change of allele frequencies in natural populations using externally directed evolution

    Get PDF
    © 2017 Elsevier LtdRandom processes in biology, in particular random genetic drift, often make it difficult to predict the fate of a particular mutation in a population. Using principles of theoretical population genetics, we present a form of biological control that ensures a focal allele's frequency, at a given locus, achieves a prescribed probability distribution at a given time. This control is in the form of an additional evolutionary force that acts on a population. We provide the mathematical framework that determines the additional force. Our analysis indicates that generally the additional force depends on the frequency of the focal allele, and it may also depend on the time. We argue that translating this additional force into an externally controlled process, which has the possibility of being implemented in a number of different ways corresponding to selection, migration, mutation, or a combination of these, may provide a flexible instrument for targeted change of traits of interest in natural populations. This framework may be applied, or used as an informed form of guidance, in a variety of different biological scenarios including: yield and pesticide optimisation in crop production, biofermentation, the local regulation of human-associated natural populations, such as parasitic animals, or bacterial communities in hospitals

    SAX J1810.8-2609 displays increasing hard X-ray activity

    Get PDF
    The neutron-star LMXB SAX J1810.8-2609 has been frequently observed by INTEGRAL over the last weeks. After the onset of hard X-ray activity as seen by Swift on Aug. 6-9 (ATel#1175), and by INTEGRAL on Aug. 19 (ATel#1185), the source was covered by the Galactic Bulge Monitoring Programme (Kuulkers et al. 2007, A&A 466, 595) and in the INTEGRAL Key Programme of the Galactic Center. The light curve of the last 2 weeks shows a gradual brightening, which peaked on 2007-09-21T06:01 UTC with a source flux of about 83 mCrab and 60 mCrab in the 20-40 keV and 40-80 keV band, respectively
    corecore