15 research outputs found
Monolithic graphene oxide sheets with controllable composition
Graphene oxide potentially has multiple applications and is typically prepared by solution-based chemical means. To date, the synthesis of a monolithic form of graphene oxide that is crucial to the precision assembly of graphene-based devices has not been achieved. Here we report the physical approach to produce monolithic graphene oxide sheets on copper foil using solid carbon, with tunable oxygen-to-carbon composition. Experimental and theoretical studies show that the copper foil provides an effective pathway for carbon diffusion, trapping the oxygen species dissolved in copper and enabling the formation of monolithic graphene oxide sheets. Unlike chemically derived graphene oxide, the as-synthesized graphene oxide sheets are electrically active, and the oxygen-to-carbon composition can be tuned during the synthesis process. As a result, the resulting graphene oxide sheets exhibit tunable bandgap energy and electronic properties. Our solution-free, physical approach may provide a path to a new class of monolithic, two-dimensional chemically modified carbon sheets.close6
Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076
Stars and planetary system
Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076
International audienceContext. TOI-2076 is a transiting three-planet system of sub-Neptunes orbiting a bright (G = 8.9 mag), young (340 ± 80 Myr) K-type star. Although a validated planetary system, the orbits of the two outer planets were unconstrained as only two non-consecutive transits were seen in TESS photometry. This left 11 and 7 possible period aliases for each. Aims: To reveal the true orbits of these two long-period planets, precise photometry targeted on the highest-probability period aliases is required. Long-term monitoring of transits in multi-planet systems can also help constrain planetary masses through TTV measurements. Methods: We used the MonoTools package to determine which aliases to follow, and then performed space-based and ground-based photometric follow-up of TOI-2076 c and d with CHEOPS, SAINT-EX, and LCO telescopes. Results: CHEOPS observations revealed a clear detection for TOI-2076 c at P = 21.02538 - 0.00074 + 0.00084 d, and allowed us to rule out three of the most likely period aliases for TOI-2076 d. Ground-based photometry further enabled us to rule out remaining aliases and confirm the P = 35.12537 ± 0.00067 d alias. These observations also improved the radius precision of all three sub-Neptunes to 2.518 ± 0.036, 3.497 ± 0.043, and 3.232 ± 0.063 R⊕. Our observations also revealed a clear anti-correlated TTV signal between planets b and c likely caused by their proximity to the 2:1 resonance, while planets c and d appear close to a 5:3 period commensurability, although model degeneracy meant we were unable to retrieve robust TTV masses. Their inflated radii, likely due to extended H-He atmospheres, combined with low insolation makes all three planets excellent candidates for future comparative transmission spectroscopy with JWST. Photometric time series are only available at the CDS via anonymous ftp to ftp://cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/664/A156</A