3 research outputs found
Relative Pose from Deep Learned Depth and a Single Affine Correspondence
We propose a new approach for combining deep-learned non-metric monocular
depth with affine correspondences (ACs) to estimate the relative pose of two
calibrated cameras from a single correspondence. Considering the depth
information and affine features, two new constraints on the camera pose are
derived. The proposed solver is usable within 1-point RANSAC approaches. Thus,
the processing time of the robust estimation is linear in the number of
correspondences and, therefore, orders of magnitude faster than by using
traditional approaches. The proposed 1AC+D solver is tested both on synthetic
data and on 110395 publicly available real image pairs where we used an
off-the-shelf monocular depth network to provide up-to-scale depth per pixel.
The proposed 1AC+D leads to similar accuracy as traditional approaches while
being significantly faster. When solving large-scale problems, e.g., pose-graph
initialization for Structure-from-Motion (SfM) pipelines, the overhead of
obtaining ACs and monocular depth is negligible compared to the speed-up gained
in the pairwise geometric verification, i.e., relative pose estimation. This is
demonstrated on scenes from the 1DSfM dataset using a state-of-the-art global
SfM algorithm. Source code: https://github.com/eivan/one-ac-pos