1,730 research outputs found
Oscillons in Scalar Field Theories: Applications in Higher Dimensions and Inflation
The basic properties of oscillons -- localized, long-lived, time-dependent
scalar field configurations -- are briefly reviewed, including recent results
demonstrating how their existence depends on the dimensionality of spacetime.
Their role on the dynamics of phase transitions is discussed, and it is shown
that oscillons may greatly accelerate the decay of metastable vacuum states.
This mechanism for vacuum decay -- resonant nucleation -- is then applied to
cosmological inflation. A new inflationary model is proposed which terminates
with fast bubble nucleation.Comment: 11 pages, 4 figures, to appear in Int. J. Mod. Phys.
Preheating of the nonminimally coupled inflaton field
We investigate preheating of an inflaton field coupled nonminimally to
a spacetime curvature. In the case of a self-coupling inflaton potential
, the dynamics of preheating changes by the effect of
the negative . We find that the nonminimal coupling works in two ways.
First, since the initial value of inflaton field for reheating becomes
smaller with the increase of , the evolution of the inflaton quanta is
delayed for fixed . Second, the oscillation of the inflaton field is
modified and the nonadiabatic change around occurs significantly. That
makes the resonant band of the fluctuation field wider. Especially for strong
coupling regimes , the growth of the inflaton flutuation is
dominated by the resonance due to the nonminimal coupling, which leads to the
significant enhancement of low momentum modes. Although the final variance of
the inflaton fluctuation does notchange significantly compared with the
minimally coupled case, we have found that the energy transfer from the
homogeneous inflaton to created particles efficiently occurs for .Comment: 13pages, 11figure
A new twist to preheating
Metric perturbations typically strengthen field resonances during preheating.
In contrast we present a model in which the super-Hubble field resonances are
completely {\em suppressed} when metric perturbations are included. The model
is the nonminimal Fakir-Unruh scenario which is exactly solvable in the
long-wavelength limit when metric perturbations are included, but exhibits
exponential growth of super-Hubble modes in their absence. This gravitationally
enhanced integrability is exceptional, both for its rarity and for the power
with which it illustrates the importance of including metric perturbations in
consistent studies of preheating. We conjecture a no-go result - there exists
no {\em single-field} model with growth of cosmologically-relevant metric
perturbations during preheating.Comment: 6 pages, 3 figures, Version to appear in Physical Review
Are Kaluza-Klein modes enhanced by parametric resonance?
We study parametric amplification of Kaluza-Klein (KK) modes in a higher
-dimensional generalized Kaluza-Klein theory, which was originally
considered by Mukohyama in the narrow resonance case. It was suggested that KK
modes can be enhanced by an oscillation of a scale of compactification by the
-dimensional sphere and by the direct product . We extend this past work to the more general case where
initial values of the scale of compactification and the quantum number of the
angular momentum of KK modes are not small. We perform analytic approaches
based on the Mathieu equation as well as numerical calculations, and find that
the expansion of the universe rapidly makes the KK field deviate from
instability bands. As a result, KK modes are not enhanced sufficiently in an
expanding universe in these two classes of models.Comment: 15 pages, 5 figure
Massless Metric Preheating
Can super-Hubble metric perturbations be amplified exponentially during
preheating ? Yes. An analytical existence proof is provided by exploiting the
conformal properties of massless inflationary models. The traditional conserved
quantity \zeta is non-conserved in many regions of parameter space. We include
backreaction through the homogeneous parts of the inflaton and preheating
fields and discuss the role of initial conditions on the post-preheating
power-spectrum. Maximum field variances are strongly underestimated if metric
perturbations are ignored. We illustrate this in the case of strong
self-interaction of the decay products. Without metric perturbations,
preheating in this case is very inefficient. However, metric perturbations
increase the maximum field variances and give alternative channels for the
resonance to proceed. This implies that metric perturbations can have a large
impact on calculations of relic abundances of particles produced during
preheating.Comment: 8 pages, 4 colour figures. Version to appear in Phys. Rev. D.
Contains substantial new analysis of the ranges of parameter space for which
large changes to the inflation-produced power spectrum are expecte
Inflationary Reheating in Grand Unified Theories
Grand unified theories may display multiply interacting fields with strong
coupling dynamics. This poses two new problems: (1) What is the nature of
chaotic reheating after inflation, and (2) How is reheating sensitive to the
mass spectrum of these theories ? We answer these questions in two interesting
limiting cases and demonstrate an increased efficiency of reheating which
strongly enhances non-thermal topological defect formation, including monopoles
and domain walls. Nevertheless, the large fluctuations may resolve this
monopole problem via a modified Dvali-Liu-Vachaspati mechanism in which
non-thermal destabilsation of discrete symmetries occurs at reheating.Comment: 4 pages, 5 ps figures - 1 colour, Revtex. Further (colour & 3-D)
figures available from http://www.sissa.it/~bassett/reheating/ . Matched to
version to appear in Phys. Rev. let
Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification
There is no consensus on how to construct structural brain networks from
diffusion MRI. How variations in pre-processing steps affect network
reliability and its ability to distinguish subjects remains opaque. In this
work, we address this issue by comparing 35 structural connectome-building
pipelines. We vary diffusion reconstruction models, tractography algorithms and
parcellations. Next, we classify structural connectome pairs as either
belonging to the same individual or not. Connectome weights and eight
topological derivative measures form our feature set. For experiments, we use
three test-retest datasets from the Consortium for Reliability and
Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare
pairwise classification results to a commonly used parametric test-retest
measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure
New constraints on multi-field inflation with nonminimal coupling
We study the dynamics and perturbations during inflation and reheating in a
multi-field model where a second scalar field is nonminimally coupled to
the scalar curvature ). When is positive, the usual
inflationary prediction for large-scale anisotropies is hardly altered while
the fluctuation in sub-Hubble modes can be amplified during preheating
for large . For negative values of , however, long-wave modes of the
fluctuation exhibit exponential increase during inflation, leading to
the strong enhancement of super-Hubble metric perturbations even when
is less than unity. This is because the effective mass becomes negative
during inflation. We constrain the strength of and the initial by
the amplitude of produced density perturbations. One way to avoid nonadiabatic
growth of super-Hubble curvature perturbations is to stabilize the mass
through a coupling to the inflaton. Preheating may thus be necessary in these
models to protect the stability of the inflationary phase.Comment: 20 pages, 8 figures, submitted to Physical Review
Non-Gaussian perturbations from multi-field inflation
We show how the primordial bispectrum of density perturbations from inflation
may be characterised in terms of manifestly gauge-invariant cosmological
perturbations at second order. The primordial metric perturbation, zeta,
describing the perturbed expansion of uniform-density hypersurfaces on large
scales is related to scalar field perturbations on unperturbed (spatially-flat)
hypersurfaces at first- and second-order. The bispectrum of the metric
perturbation is thus composed of (i) a local contribution due to the
second-order gauge-transformation, and (ii) the instrinsic bispectrum of the
field perturbations on spatially flat hypersurfaces. We generalise previous
results to allow for scale-dependence of the scalar field power spectra and
correlations that can develop between fields on super-Hubble scales.Comment: 11 pages, RevTex; minor changes to text; conclusions unchanged;
version to appear in JCA
Reheating and turbulence
We show that the ''turbulent'' particle spectra found in numerical
simulations of the behavior of matter fields during reheating admit a simple
interpretation in terms of hydrodynamic models of the reheating period. We
predict a particle number spectrum with for Comment: 10 pages, one figure included in tex
- âŠ