86 research outputs found

    Classical simulation of Quantum Entanglement using Optical Transverse Modes in Multimode Waveguides

    Full text link
    We discuss mode-entangled states based on the optical transverse modes of the optical field propagating in multi-mode waveguides, which are classical analogs of the quantum entangled states. The analogs are discussed in detail, including the violation of the Bell inequality and the correlation properties of optical pulses' group delays. The research on these analogs may be important, for it not only provides useful insights into fundamental features of quantum entanglement, but also yields new insights into quantum computation and quantum communication.Comment: RevTeX v4, 17 pages and 4 figure

    Properties of finite Gaussians and the discrete-continuous transition

    Full text link
    Weyl's formulation of quantum mechanics opened the possibility of studying the dynamics of quantum systems both in infinite-dimensional and finite-dimensional systems. Based on Weyl's approach, generalized by Schwinger, a self-consistent theoretical framework describing physical systems characterised by a finite-dimensional space of states has been created. The used mathematical formalism is further developed by adding finite-dimensional versions of some notions and results from the continuous case. Discrete versions of the continuous Gaussian functions have been defined by using the Jacobi theta functions. We continue the investigation of the properties of these finite Gaussians by following the analogy with the continuous case. We study the uncertainty relation of finite Gaussian states, the form of the associated Wigner quasi-distribution and the evolution under free-particle and quantum harmonic oscillator Hamiltonians. In all cases, a particular emphasis is put on the recovery of the known continuous-limit results when the dimension dd of the system increases.Comment: 21 pages, 4 figure

    Wigner phase space distribution as a wave function

    Full text link
    We demonstrate that the Wigner function of a pure quantum state is a wave function in a specially tuned Dirac bra-ket formalism and argue that the Wigner function is in fact a probability amplitude for the quantum particle to be at a certain point of the classical phase space. Additionally, we establish that in the classical limit, the Wigner function transforms into a classical Koopman-von Neumann wave function rather than into a classical probability distribution. Since probability amplitude need not be positive, our findings provide an alternative outlook on the Wigner function's negativity.Comment: 6 pages and 2 figure

    Chiral tunneling and the Klein paradox in graphene

    Full text link
    The so-called Klein paradox - unimpeded penetration of relativistic particles through high and wide potential barriers - is one of the most exotic and counterintuitive consequences of quantum electrodynamics (QED). The phenomenon is discussed in many contexts in particle, nuclear and astro- physics but direct tests of the Klein paradox using elementary particles have so far proved impossible. Here we show that the effect can be tested in a conceptually simple condensed-matter experiment by using electrostatic barriers in single- and bi-layer graphene. Due to the chiral nature of their quasiparticles, quantum tunneling in these materials becomes highly anisotropic, qualitatively different from the case of normal, nonrelativistic electrons. Massless Dirac fermions in graphene allow a close realization of Klein's gedanken experiment whereas massive chiral fermions in bilayer graphene offer an interesting complementary system that elucidates the basic physics involved.Comment: 15 pages, 4 figure

    Phosphorene: Fabrication, Properties and Applications

    Full text link
    Phosphorene, the single- or few-layer form of black phosphorus, was recently rediscovered as a twodimensional layered material holding great promise for applications in electronics and optoelectronics. Research into its fundamental properties and device applications has since seen exponential growth. In this Perspective, we review recent progress in phosphorene research, touching upon topics on fabrication, properties, and applications; we also discuss challenges and future research directions. We highlight the intrinsically anisotropic electronic, transport, optoelectronic, thermoelectric, and mechanical properties of phosphorene resulting from its puckered structure in contrast to those of graphene and transition-metal dichalcogenides. The facile fabrication and novel properties of phosphorene have inspired design and demonstration of new nanodevices; however, further progress hinges on resolutions to technical obstructions like surface degradation effects and non-scalable fabrication techniques. We also briefly describe the latest developments of more sophisticated design concepts and implementation schemes that address some of the challenges in phosphorene research. It is expected that this fascinating material will continue to offer tremendous opportunities for research and development for the foreseeable future.Comment: invited perspective for JPC

    Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures

    Full text link
    Spatial and/or temporal propagation of light waves in periodic optical structures offers a rather unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based on either spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair-production, the Dirac oscillator, the relativistic Kronig-Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.Comment: review article (invited), 14 pages, 7 figures, 105 reference

    Put It in Your Shoe It Will Make You Limp: British Men’s Online Responses to a Male Pill

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This article analyzes online interactions between British men and other online readers’ comments in response to two news articles focused on a male contraceptive pill. The aim of the study was to explore how British men’s online accounts construct a male pill as a potential contraceptive option for family planning. The two online articles reported the scientific innovations, as well as the production and marketing, of a nonhormonal, plant-based pill for men. Discourse analysis was used to analyze the online comments, from which two discourses emerged: (a) “Men as responsible health consumers” and (b) “‘Killing sperm’ and other side effects on semen.” When provided with the opportunity to take future responsibility for family planning, male readers were found to be unlikely to use a contraceptive pill. The men expressed the need for new options of contraception but, overall, felt a male pill was not the solution
    • 

    corecore