121 research outputs found

    Internal standard-based analysis of microarray data. Part 1: analysis of differential gene expressions

    Get PDF
    Genome-scale microarray experiments for comparative analysis of gene expressions produce massive amounts of information. Traditional statistical approaches fail to achieve the required accuracy in sensitivity and specificity of the analysis. Since the problem can be resolved neither by increasing the number of replicates nor by manipulating thresholds, one needs a novel approach to the analysis. This article describes methods to improve the power of microarray analyses by defining internal standards to characterize features of the biological system being studied and the technological processes underlying the microarray experiments. Applying these methods, internal standards are identified and then the obtained parameters are used to define (i) genes that are distinct in their expression from background; (ii) genes that are differentially expressed; and finally (iii) genes that have similar dynamical behavior

    A Comprehensive and Universal Method for Assessing the Performance of Differential Gene Expression Analyses

    Get PDF
    The number of methods for pre-processing and analysis of gene expression data continues to increase, often making it difficult to select the most appropriate approach. We present a simple procedure for comparative estimation of a variety of methods for microarray data pre-processing and analysis. Our approach is based on the use of real microarray data in which controlled fold changes are introduced into 20% of the data to provide a metric for comparison with the unmodified data. The data modifications can be easily applied to raw data measured with any technological platform and retains all the complex structures and statistical characteristics of the real-world data. The power of the method is illustrated by its application to the quantitative comparison of different methods of normalization and analysis of microarray data. Our results demonstrate that the method of controlled modifications of real experimental data provides a simple tool for assessing the performance of data preprocessing and analysis methods

    Kerr-Schild metrics revisited I. The ground state

    Full text link
    The Kerr-Schild pencil of metrics g_{ab}+\La l_al_b is investigated in the generic case when it maps an arbitrary vacuum space-time with metric gabg_{ab} to a vacuum space-time. The theorem is proved that this generic case, with the field ll shearing, does not contain the shear-free subclass as a smooth limit. It is shown that one of the K\'ota-Perj\'es metrics is a solution in the shearing class.Comment: 16 page

    From microarray to biology: an integrated experimental, statistical and in silico analysis of how the extracellular matrix modulates the phenotype of cancer cells

    Get PDF
    A statistically robust and biologically-based approach for analysis of microarray data is described that integrates independent biological knowledge and data with a global F-test for finding genes of interest that minimizes the need for replicates when used for hypothesis generation. First, each microarray is normalized to its noise level around zero. The microarray dataset is then globally adjusted by robust linear regression. Second, genes of interest that capture significant responses to experimental conditions are selected by finding those that express significantly higher variance than those expressing only technical variability. Clustering expression data and identifying expression-independent properties of genes of interest including upstream transcriptional regulatory elements (TREs), ontologies and networks or pathways organizes the data into a biologically meaningful system. We demonstrate that when the number of genes of interest is inconveniently large, identifying a subset of "beacon genes" representing the largest changes will identify pathways or networks altered by biological manipulation. The entire dataset is then used to complete the picture outlined by the "beacon genes." This allow construction of a structured model of a system that can generate biologically testable hypotheses. We illustrate this approach by comparing cells cultured on plastic or an extracellular matrix which organizes a dataset of over 2,000 genes of interest from a genome wide scan of transcription. The resulting model was confirmed by comparing the predicted pattern of TREs with experimental determination of active transcription factors

    High-throughput processing and normalization of one-color microarrays for transcriptional meta-analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray experiments are becoming increasingly common in biomedical research, as is their deposition in publicly accessible repositories, such as Gene Expression Omnibus (GEO). As such, there has been a surge in interest to use this microarray data for meta-analytic approaches, whether to increase sample size for a more powerful analysis of a specific disease (e.g. lung cancer) or to re-examine experiments for reasons different than those examined in the initial, publishing study that generated them. For the average biomedical researcher, there are a number of practical barriers to conducting such meta-analyses such as manually aggregating, filtering and formatting the data. Methods to automatically process large repositories of microarray data into a standardized, directly comparable format will enable easier and more reliable access to microarray data to conduct meta-analyses.</p> <p>Methods</p> <p>We present a straightforward, simple but robust against potential outliers method for automatic quality control and pre-processing of tens of thousands of single-channel microarray data files. GEO GDS files are quality checked by comparing parametric distributions and quantile normalized to enable direct comparison of expression level for subsequent meta-analyses.</p> <p>Results</p> <p>13,000 human 1-color experiments were processed to create a single gene expression matrix that subsets can be extracted from to conduct meta-analyses. Interestingly, we found that when conducting a global meta-analysis of gene-gene co-expression patterns across all 13,000 experiments to predict gene function, normalization had minimal improvement over using the raw data.</p> <p>Conclusions</p> <p>Normalization of microarray data appears to be of minimal importance on analyses based on co-expression patterns when the sample size is on the order of thousands microarray datasets. Smaller subsets, however, are more prone to aberrations and artefacts, and effective means of automating normalization procedures not only empowers meta-analytic approaches, but aids in reproducibility by providing a standard way of approaching the problem.</p> <p>Data availability: matrix containing normalized expression of 20,813 genes across 13,000 experiments is available for download at . Source code for GDS files pre-processing is available from the authors upon request.</p

    Bladder inflammatory transcriptome in response to tachykinins: Neurokinin 1 receptor-dependent genes and transcription regulatory elements

    Get PDF
    Background Tachykinins (TK), such as substance P, and their neurokinin receptors which are ubiquitously expressed in the human urinary tract, represent an endogenous system regulating bladder inflammatory, immune responses, and visceral hypersensitivity. Increasing evidence correlates alterations in the TK system with urinary tract diseases such as neurogenic bladders, outflow obstruction, idiopathic detrusor instability, and interstitial cystitis. However, despite promising effects in animal models, there seems to be no published clinical study showing that NK-receptor antagonists are an effective treatment of pain in general or urinary tract disorders, such as detrusor overactivity. In order to search for therapeutic targets that could block the tachykinin system, we set forth to determine the regulatory network downstream of NK1 receptor activation. First, NK1R-dependent transcripts were determined and used to query known databases for their respective transcription regulatory elements (TREs). Methods: An expression analysis was performed using urinary bladders isolated from sensitized wild type (WT) and NK1R-/- mice that were stimulated with saline, LPS, or antigen to provoke inflammation. Based on cDNA array results, NK1R-dependent genes were selected. PAINT software was used to query TRANSFAC database and to retrieve upstream TREs that were confirmed by electrophoretic mobility shift assays. Results: The regulatory network of TREs driving NK1R-dependent genes presented cRel in a central position driving 22% of all genes, followed by AP-1, NF-kappaB, v-Myb, CRE-BP1/c-Jun, USF, Pax-6, Efr-1, Egr-3, and AREB6. A comparison between NK1R-dependent and NK1R-independent genes revealed Nkx-2.5 as a unique discriminator. In the presence of NK1R, Nkx2-5 _01 was significantly correlated with 36 transcripts which included several candidates for mediating bladder development (FGF) and inflammation (PAR-3, IL-1R, IL-6, α-NGF, TSP2). In the absence of NK1R, the matrix Nkx2-5_02 had a predominant participation driving 8 transcripts, which includes those involved in cancer (EYA1, Trail, HSF1, and ELK-1), smooth-to-skeletal muscle trans-differentiation, and Z01, a tight-junction protein, expression. Electrophoretic mobility shift assays confirmed that, in the mouse urinary bladder, activation of NK1R by substance P (SP) induces both NKx-2.5 and NF-kappaB translocations. Conclusion: This is the first report describing a role for Nkx2.5 in the urinary tract. As Nkx2.5 is the unique discriminator of NK1R-modulated inflammation, it can be imagined that in the near future, new based therapies selective for controlling Nkx2.5 activity in the urinary tract may be used in the treatment in a number of bladder disorders

    Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression.</p> <p>Methods</p> <p>To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an <it>in vitro </it>Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis.</p> <p>Results</p> <p>Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation.</p> <p>Conclusions</p> <p>Bioinformatics analysis followed by functional genomics demonstrated that AKR1C3 overexpression promotes angiogenesis and aggressiveness of PC-3 cells. These results also suggest that AKR1C3-mediated tumor angiogenesis is regulated by estrogen and androgen metabolism with subsequent IGF-1R and Akt activation followed by VEGF expression in PCa cells.</p

    Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression

    Get PDF
    Caloric restriction remains the most reproducible measure known to extend life span or diminish age-associated changes. Previously, we have described an elevated expression of the prolyl-4-hydroxylase domain (PHD) 3 with increasing age in mouse and human heart. PHDs modulate the cellular response towards hypoxia by regulating the stability of the α-subunit of the transcriptional activator hypoxia inducible factor (HIF). In the present study we demonstrate that elevated PHD3, but not PHD1 or PHD2, expression is not restricted to the heart but does also occur in rat skeletal muscle and liver. Elevated expression of PHD3 is counteracted by a decrease in caloric intake (40% caloric restriction applied for 6 months) in all three tissues. Age-associated changes in PHD3 expression inversely correlated with the expression of the HIF-target gene macrophage migration inhibitory factor (MIF), which has been previously described to be involved in cellular HIF-mediated anti-ageing effects. These data give insight into the molecular consequences of caloric restriction, which influences hypoxia-mediated gene expression via PHD3

    “Topological Significance” Analysis of Gene Expression and Proteomic Profiles from Prostate Cancer Cells Reveals Key Mechanisms of Androgen Response

    Get PDF
    The problem of prostate cancer progression to androgen independence has been extensively studied. Several studies systematically analyzed gene expression profiles in the context of biological networks and pathways, uncovering novel aspects of prostate cancer. Despite significant research efforts, the mechanisms underlying tumor progression are poorly understood. We applied a novel approach to reconstruct system-wide molecular events following stimulation of LNCaP prostate cancer cells with synthetic androgen and to identify potential mechanisms of androgen-independent progression of prostate cancer.We have performed concurrent measurements of gene expression and protein levels following the treatment using microarrays and iTRAQ proteomics. Sets of up-regulated genes and proteins were analyzed using our novel concept of "topological significance". This method combines high-throughput molecular data with the global network of protein interactions to identify nodes which occupy significant network positions with respect to differentially expressed genes or proteins. Our analysis identified the network of growth factor regulation of cell cycle as the main response module for androgen treatment in LNCap cells. We show that the majority of signaling nodes in this network occupy significant positions with respect to the observed gene expression and proteomic profiles elicited by androgen stimulus. Our results further indicate that growth factor signaling probably represents a "second phase" response, not directly dependent on the initial androgen stimulus.We conclude that in prostate cancer cells the proliferative signals are likely to be transmitted from multiple growth factor receptors by a multitude of signaling pathways converging on several key regulators of cell proliferation such as c-Myc, Cyclin D and CREB1. Moreover, these pathways are not isolated but constitute an interconnected network module containing many alternative routes from inputs to outputs. If the whole network is involved, a precisely formulated combination therapy may be required to fight the tumor growth effectively
    corecore