6 research outputs found
Constitutively Active Canonical NF-ÎşB Pathway Induces Severe Bone Loss in Mice
Physiologic osteoclastogenesis entails activation of multiple signal transduction pathways distal to the cell membrane receptor RANK. However, atypical osteoclastogenesis driven by pro-inflammatory stimuli has been described. We have reported recently a novel mechanism whereby endogenous mutational activation of the classical NF-ÎşB pathway is sufficient to induce RANKL/RANK-independent osteoclastogenesis. Here we investigate the physiologic relevance of this phenomenon in vivo. Using a knock-in approach, the active form of IKK2, namely IKK2SSEE, was introduced into the myeloid lineage with the aid of CD11b-cre mice. Phenotypic assessment revealed that expression of IKK2SSEE in the myeloid compartment induced significant bone loss in vivo. This observation was supported by a dramatic increase in the number and size of osteoclasts in trabecular regions, elevated levels of circulating TRACP-5b, and reduced bone volume. Mechanistically, we observed that IKK2SSEE induced high expression of not only p65 but also p52 and RelB; the latter two molecules are considered exclusive members of the alternative NF-ÎşB pathway. Intriguingly, RelB and P52 were both required to mediate the osteoclastogenic effect of IKK2SSEE and co-expression of these two proteins was sufficient to recapitulate osteoclastogenesis in the absence of RANKL or IKK2SSEE. Furthermore, we found that NF-ÎşB2/p100 is a potent inhibitor of IKK2SSEE-induced osteoclastogenesis. Deletion of p52 enabled more robust osteoclast formation by the active kinase. In summary, molecular activation of IKK2 may play a role in conditions of pathologic bone destruction, which may be refractory to therapeutic interventions targeting the proximal RANKL/RANK signal
GPCR-CARMA3-NF-kappaB Signaling Axis: A Novel Drug Target for Cancer Therapy
G protein-coupled receptors (GPCRs) play pivotal roles in regulating various cellular functions. It has been well established that GPCR activates NF-κB and aberrant regulation of GPCR-NF-κB signaling axis leads to cancers. However, how GPCRs induce NF-κB activation remains largely elusive. Recently, it has been shown that a novel scaffold protein, CARMA3, is indispensable in GPCR-induced NF-κB activation. In CARMA3-deficient mouse embryonic fibroblast cells, some GPCR ligand-, like lysophosphatidic acid (LPA), induced NF-κB activation is completely abolished. Mechanistically, upon GPCR activation, CARMA3 is linked to the membrane by β-arrestin 2 and phosphorylated by some PKC isoform. Phosphorylation of CARMA3 unfolds its steric structure and recruits its downstream effectors, which in turn activate the IKK complex and NF-κB. Interestingly, GPCR (LPA)-CARMA3-NF-κB signaling axis also exists in ovarian cancer cells, and knockdown of CARMA3 results in attenuation of ovarian cancer migration and invasion, suggesting a novel target for cancer therapy. In this review, we summarize the biology of CARMA3, discuss the GPCR (LPA)-CARMA3-NF-κB signaling axis in ovarian cancer and speculate its potential role in other types of cancers. With a strongly increasing tendency to identify more LPA-like ligands, such as endothelin-1 and angiotensin II, which also activate NF-κB through CARMA3 and contribute to myriad diseases, GPCR- CARMA3-NF-κB signaling axis is emerging as a novel drug target for various types of cancer and other myriad diseases