343 research outputs found

    Distal Renal Tubular Acidosis and Sensorineural Deafness with Mutation in the ATP6V1B1 Gene

    Get PDF
    A acidose tubular renal distal é uma doença rara, caracterizada pela incapacidade na acidificação da urina, condicionando acidose metabólica hiperclorémica, hipocaliémia, hipercalciúria e nefrocalcinose, o que poderá causar atraso de crescimento, alteração do metabolismo ósseo e insuficiência renal crónica. A acidose tubular renal distal associada a surdez neurossensorial é uma doença de herança autossómica recessiva, causada por mutações do gene que codifica a subunidade B1 da H+ -ATPase (ATP6V1B1). Os autores relatam os casos de duas irmãs que apresentaram má progressão ponderal, alterações iónicas, do equilíbrio ácido base e surdez neurossensorial. Foi detectada em ambas as crianças a mutação homozigótica no gene ATP6V1B1. Com estes dois casos pretende -se destacar a importância de um diagnóstico precoce nesta patologia rara

    Dynamical Symmetry Breaking in Models with the Yukawa Interaction

    Full text link
    We discuss models with a massless fermion and a self-interacting massive scalar field with the Yukawa interaction. The chiral condensate and the fermion mass are calculated analytically. It is shown that the models have a phase transition as a function of the squared mass of the scalar field.Comment: 7 pages, no figures, in Eqs. (7) and (11) one coefficient was change

    Holographic Roberge-Weiss Transitions

    Full text link
    We investigate N=4 SYM coupled to fundamental flavours at nonzero imaginary quark chemical potential in the strong coupling and large N limit, using gauge/gravity duality applied to the D3-D7 system, treating flavours in the probe approximation. The interplay between Z(N) symmetry and the imaginary chemical potential yields a series of first-order Roberge-Weiss transitions. An additional thermal transition separates phases where quarks are bound/unbound into mesons. This results in a set of Roberge-Weiss endpoints: we establish that these are triple points, determine the Roberge-Weiss temperature, give the curvature of the phase boundaries and confirm that the theory is analytic in mu^2 when mu^2~0.Comment: 37 pages, 13 figures; minor comments added, to appear in JHE

    Low-energy theorems of QCD and bulk viscosity at finite temperature and baryon density in a magnetic field

    Full text link
    The nonperturbative QCD vacuum at finite temperature and a finite baryon density in an external magnetic field is studied. Equations relating nonperturbative condensates to the thermodynamic pressure for T0T\neq 0, μq0\mu_q \neq 0 and H0H\neq 0 are obtained, and low-energy theorems are derived. A bulk viscosity ζ(T,μ,H)\zeta(T, \mu, H) is expressed in terms of basic thermodynamical quantities describing the quark-gluon matter at T0T\neq 0, μq0\mu_q \neq 0, and H0H\neq 0. Various limiting cases are also considered.Comment: 12 pages; v2: title changed, new section about bulk viscosity and new references added; v3: new discussion adde

    Holographic Roberge-Weiss Transitions II: Defect Theories and the Sakai-Sugimoto Model

    Full text link
    We extend the work of Aarts et al., including an imaginary chemical potential for quark number into the Sakai-Sugimoto model and codimension k defect theories. The phase diagram of these models are a function of three parameters, the temperature, chemical potential and the asymptotic separation of the flavour branes, related to a mass for the quarks in the boundary theories. We compute the phase diagrams and the pressure due to the flavours of the theories as a function of these parameters and show that there are Roberge-Weiss transitions in the high temperature phases, chiral symmetry restored for the Sakai-Sugimoto model and deconfined for the defect models, while at low temperatures there are no Roberge-Weiss transitions. In all the models we consider the transitions between low and high temperature phases are first order, hence the points where they meet the Roberge-Weiss lines are triple points. The pressure for the defect theories scales in the way we expect from dimensional analysis while the Sakai-Sugimoto model exhibits unusual scaling. We show that the models we consider are analytic in \mu^2 when \mu^2 is small.Comment: 39 pages, 12 figures. references added, Sakai-Sugimoto section revised, version to appear in JHE

    The gluonic condensate from the hyperfine splitting Mcog(χcJ)M(hc)M_{\rm cog}(\chi_{cJ})-M(h_c) in charmonium

    Full text link
    The precision measurement of the hyperfine splitting ΔHF(1P,ccˉ)=Mcog(χcJ)M(hc)=0.5±0.4\Delta_{\rm HF} (1P, c\bar c)=M_{\rm cog} (\chi_{cJ}) - M(h_c) = -0.5 \pm 0.4 MeV in the Fermilab--E835 experiment allows to determine the gluonic condensate G2G_2 with high accuracy if the gluonic correlation length TgT_g is fixed. In our calculations the negative value of ΔHF=0.3±0.4\Delta_{\rm HF} = -0.3 \pm 0.4 MeV is obtained only if the relatively small Tg=0.16T_g = 0.16 fm and G2=0.065(3)G_2 = 0.065 (3) GeV4{}^4 are taken. These values correspond to the ``physical'' string tension (σ0.18(\sigma \approx 0.18 GeV2^2). For Tg0.2T_g \ge 0.2 fm the hyperfine splitting is positive and grows for increasing TgT_g. In particular for Tg=0.2T_g = 0.2 fm and G2=0.041(2)G_2 = 0.041 (2) GeV4{}^4 the splitting ΔHF=1.4(2)\Delta_{\rm HF} = 1.4 (2) MeV is obtained, which is in accord with the recent CLEO result.Comment: 9 pages revtex 4, no figure

    Topological susceptibility in Yang-Mills theory in the vacuum correlator method

    Full text link
    We calculate the topological susceptibility of the Yang-Mills vacuum using the field correlator method. Our estimate for the SU(3) gauge group, \chi^{1/4} = 196(7) MeV, is in a very good agreement with the results of recent numerical simulations of the Yang-Mills theory on the lattice.Comment: 5 pages (JETP Letters style

    Real and imaginary chemical potential in 2-color QCD

    Full text link
    In this paper we study the finite temperature SU(2) gauge theory with staggered fermions for non-zero imaginary and real chemical potential. The method of analytical continuation of Monte Carlo results from imaginary to real chemical potential is tested by comparison with simulations performed {\em directly} for real chemical potential. We discuss the applicability of the method in the different regions of the phase diagram in the temperature -- imaginary chemical potential plane.Comment: 15 pages, 7 figures; a few comments added; version published on Phys. Rev.

    The critical line from imaginary to real baryonic chemical potentials in two-color QCD

    Full text link
    The method of analytic continuation from imaginary to real chemical potentials μ\mu is one of the few available techniques to study QCD at finite temperature and baryon density. One of its most appealing applications is the determination of the critical line for small μ\mu: we perform a direct test of the validity of the method in this case by studying two-color QCD, where the sign problem is absent. The (pseudo)critical line is found to be analytic around μ2=0\mu^2 = 0, but a very large precision would be needed at imaginary μ\mu to correctly predict the location of the critical line at real μ\mu.Comment: Replaced with the version accepted for publication as a Rapid Communication in Physical Review D
    corecore