7 research outputs found

    Association of genetic ancestry with colorectal tumor location in Puerto Rican Latinos

    Get PDF
    Colorectal cancer (CRC) is the first cause of cancer deaths among Puerto Ricans. The incidence and mortality of CRC in Puerto Rico continue to be on the rise. The burden of CRC in Puerto Rico is higher than among US Hispanics and is second only to African Americans, thus supporting the importance of studying this CRC health disparity. The genetic background of the Puerto Rican population is a mix of European, African, and Amerindian races, which may account, in part, for the differences observed in the CRC mortality rates among Puerto Ricans. The objective of the study was to assess the role of genetic ancestry in CRC risk and its association with clinicopathological features of CRC tumors in Puerto Ricans. We used a validated panel of 105 ancestry informative markers (AIMs) to estimate genetic ancestry in 406 Puerto Rican CRC cases and 425 Puerto Rican controls. We examined the association of genetic ancestry with CRC risk and tumor clinicopathological characteristics. The mean ancestry proportions in the study population were 61% European, 21% African, and 18% Amerindian. No association was observed between genetic ancestry and risk of CRC. However, African ancestry was associated with an increased risk of developing rectal tumors (OR = 1.55, 95% CI 1.04-2.31). Additional studies are needed to fully elucidate the role of African ancestry in CRC carcinogenesis.National Institute on Minority Health and Health Disparities (NIMHD) [MD007587]; National Institute of Allergy and Infectious Diseases (NIAID) [MD007587]; National Cancer Institute (NCI) [CA130034, CA096297/CA096300]; Center for Collaborative Research in Health Disparities RCMI [G12MD007600]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The Interaction between Early Life Epilepsy and Autistic-Like Behavioral Consequences: A Role for the Mammalian Target of Rapamycin (mTOR) Pathway

    Get PDF
    Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures

    Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism

    Get PDF
    Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4-22 (Δe4-22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4-22(-/-) mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs
    corecore