7,405 research outputs found
Currently available tools and strategies for emergency vaccination in case of avian influenza
Recent epidemics of highly contagious animal diseases included in the list A of the OIE such as foot-and-mouth disease, classical swine fever and avian influenza (AI) have led to the implementation of stamping-out policies resulting in the depopulation of millions of animals. The enforcement of a control strategy based on culling of animals that are infected, suspected of being infected or suspected of being contaminated, which is based only on the application of sanitary restrictions on farms, may not be sufficient to avoid the spread of infection, particularly in areas that have high animal densities, thus resulting in mass depopulation. In the European Union, the directive that imposes the enforcement of a stampingout policy (92/40/EC) for AI was adopted in 1992 but was drafted in the 1980s. The poultry industry has undergone substantial changes in the last twenty years, mainly resulting in shorter production cycles and greater animal densities per territorial unit. Due to these organizational changes, infectious diseases are significantly more difficult to control as a result of the greater number of susceptible animals reared per given unit of time and the difficulties in applying adequate biosecurity measures. The slaughter and destruction of great numbers of animals is also questionable from an ethical point of view, particularly when human-health implications are negligible. For this reason, mass depopulation has raised serious concerns for the general public and has recently led to very high costs and economic losses for the national and federal governments, the stakeholders and ultimately for the consumers. In the past, the use of vaccines in such emergencies has been limited by the impossibility of differentiating vaccinated/infected from vaccinated/non-infected animals. The major concern was that through trade or movement of apparently uninfected animals or products, the disease could spread further or might be exported to other countries. For this reason export bans have been imposed on countries enforcing a vaccination policy. This paper takes into account the possible strategies for the control of avian influenza infections, bearing in mind the new proposed definition of AI. In detail, an overview of the advantages and disadvantages of using conventional inactivated (homologous and heterologous) vaccines and recombinant vaccines is presented and discussed. Reference is made to the different control strategies including the restriction measures to be applied in case of the enforcement of a vaccination policy. In addition, the implications of a vaccination policy on trade are discussed. In conclusion, if vaccination is accepted as an option for the control of AI, vaccine banks including companion diagnostic tests must be established and made available for immediate use
Erasing the Invisible Line to Empower the Pandemic Response
A challenging debate has arisen on the role of veterinary expertise in facing the SARS-CoV-2 pandemic. It seems totally unreasonable that in most countries, veterinary diagnostic and tracing forces were not deployed at the start to perform strategic tasks, which could have mitigated the outcome of this dramatic health emergency. Erasing the invisible line between human and veterinary virology will empower the response to future pandemics
High quality MgB2 thin films in-situ grown by dc magnetron sputtering
Thin films of the recently discovered magnesium diboride (MgB2) intermetalic
superconducting compound have been grown using a magnetron sputtering
deposition technique followed by in-situ annealing at 830 C. High quality films
were obtained on both sapphire and MgO substrates. The best films showed
maximum Tc = 35 K (onset), a transition width of 0.5 K, a residual resistivity
ratio up to 1.6, a low temperature critical current density Jc > 1 MA/cm2 and
anisotropic critical field with gamma = 2.5 close to the values obtained for
single crystals. The preparation technique can be easily scaled to produce
large area in-situ films.Comment: 7 pages, 4 figure
ITS2 in calanoid copepods: reconstructing phylogenetic relationships and identifying a newly introduced species in the Mediterranean
Phylogenetic inference and molecular taxonomy are becoming increasingly important approaches to classical morphological systematics and marine ecology. The number of molecular markers suitable for such goals is quite high, but general use restricts the list to a few of them, mainly mitochondrial (namely cytochrome c oxidase subunit I, COI and Cytochrome b), especially in copepods. The ribosomal cistronic regions have been widely used for broad phylogenetic analyses in different taxa. Among them, the internal transcribed spacers (ITS rDNA) are powerful tools for phylogenetic reconstructions at the different taxonomic levels, although not yet extensively used for copepods. In the present work, we tested the suitability of ITS2 rDNA marker to reconstruct the phylogenetic relationships of calanoid copepods using sequences retrieved from GenBank, complementing the phylogenetic positions of the species studied with their morphological and ecological traits. Through ITS2 rDNA we provided the first molecular evidence for the invasive calanoid Pseudodiaptomus marinus from the Mediterranean Sea (Lake Faro, Sicily, Italy), and compared it with the GenBank ITS2 sequences for P. marinus from Korea and other calanoid species. The divergence of the sequences of our P. marinus from those of Korean specimens was quite prominent (4.4%) and allowed us to hypothesise either a new forma living in the Mediterranean or a cryptic species. This study highlights the appropriateness of ITS2 for phylogenetic reconstructions and species identification, as well as for barcoding, meta-barcoding and phylogeographic approaches, and evidences the need for a more thorough knowledge of ribosomal regions in copepods from different sites
The Transmissibility of Highly Pathogenic Avian Influenza in Commercial Poultry in Industrialised Countries
BACKGROUND: With the increased occurrence of outbreaks of H5N1 worldwide there is concern that the virus could enter commercial poultry farms with severe economic consequences. METHODOLOGY/PRINCIPAL FINDINGS: We analyse data from four recent outbreaks of highly pathogenic avian influenza (HPAI) in commercial poultry to estimate the farm-to-farm reproductive number for HPAI. The reproductive number is a key measure of the transmissibility of HPAI at the farm level because it can be used to evaluate the effectiveness of the control measures. In these outbreaks the mean farm-to-farm reproductive number prior to controls ranged from 1.1 to 2.4, with the maximum farm-based reproductive number in the range 2.2 to 3.2. Enhanced bio-security, movement restrictions and prompt isolation of the infected farms in all four outbreaks substantially reduced the reproductive number, but it remained close to the threshold value 1 necessary to ensure the disease will be eradicated. CONCLUSIONS/SIGNIFICANCE: Our results show that depending on the particular situation in which an outbreak of avian influenza occurs, current controls might not be enough to eradicate the disease, and therefore a close monitoring of the outbreak is required. The method we used for estimating the reproductive number is straightforward to implement and can be used in real-time. It therefore can be a useful tool to inform policy decisions
Photodoping and in-gap interface states across the metal-insulator transition in LaAlO3/SrTiO3 heterostructures
By using scanning tunneling microscopy/spectroscopy we show that the interface between LaAlO3 and SrTiO3 band insulators is characterized by in-gap interface states. These features were observed in insulating as well as conducting LaAlO3/SrTiO3 bilayers. The data show how the interface density of states evolves across the insulating to metal transition, demonstrating that nanoscale electronic inhomogeneities in the system are induced by spatially localized electrons
Conventional inactivated bivalent H5/H7 vaccine prevents viral localization in muscles of turkeys infected experimentally with low pathogenic avian influenza and highly pathogenic avian influenza H7N1 isolates
Highly pathogenic avian influenza (HPAI) viruses cause viraemia and systemic infections with virus replication in internal organs and muscles; in contrast, low pathogenicity avian influenza (LPAI) viruses produce mild infections with low mortality rates and local virus replication. There is little available information on the ability of LPAI viruses to cause viraemia or on the presence of avian influenza viruses in general in the muscles of infected turkeys. The aim of the present study was to determine the ability of LPAI and HPAI H7N1 viruses to reach muscle tissues following experimental infection and to determine the efficacy of vaccination in preventing viraemia and meat localization. The potential of infective muscle tissue to act as a source of infection for susceptible turkeys by mimicking the practice of swill-feeding was also investigated. The HPAI virus was isolated from blood and muscle tissues of all unvaccinated turkeys; LPAI could be isolated only from blood of one bird and could be detected only by reverse transcriptasepolymerase chain reaction in muscles. In contrast, no viable virus or viral RNA could be detected in muscles of vaccinated/challenged turkeys, indicating that viral localization in muscle tissue is prevented in vaccinated birds
Isolation of avian influenza virus (H9N2) from emu in China
This is the first reported isolation of avian influenza virus (AIV) from emu in China. An outbreak of AIV infection occurred at an emu farm that housed 40 four-month-old birds. Various degrees of haemorrhage were discovered in the tissues of affected emus. Cell degeneration and necrosis were observed microscopically. Electron microscopy revealed round or oval virions with a diameter of 80 nm to 120 nm, surrounded by an envelope with spikes. The virus was classified as low pathogenic AIV (LPAIV), according to OIE standards. It was named A/Emu/HeNen/14/2004(H9N2)(Emu/HN/2004). The HA gene (1683bp) was amplified by RT-PCR and it was compared with other animal H9N2 AIV sequences in GenBank, the US National Institutes of Health genetic sequence database. The results suggested that Emu/HN/2004 may have come from an avian influenza virus (H9N2) from Southern China
- …