19,571 research outputs found

    CPT- and B-Violation: The p-pbar Sector

    Full text link
    The CPT symmetry of relativistic quantum field theory requires the total lifetimes of particles and antiparticles be equal. Detection of pbar lifetime shorter than tau_p > O(10^32) yr would signal breakdown of CPT invariance, in combination with B-violation. The best current limit on tau_pbar, inferred from cosmic ray measurements, is about one Myr, placing lower limits on CPT-violating scales that depend on the exact mechanism. Paths to CPT breakdown within and outside ordinary quantum mechanics are sketched. Many of the limiting CPT-violating scales in pbar decay lie within the weak-to-Planck range.Comment: 6 pages, LaTeX, .sty file included; based on contribution to CPT98 Conference; minor changes, accepted by Mod. Phys. Lett.

    The superconducting phase transition and gauge dependence

    Full text link
    The gauge dependence of the renormalization group functions of the Ginzburg-Landau model is investigated. The analysis is done by means of the Ward-Takahashi identities. After defining the local superconducting order parameter, it is shown that its exponent β\beta is in fact gauge independent. This happens because in d=3d=3 the Landau gauge is the only gauge having a physical meaning, a property not shared by the four-dimensional model where any gauge choice is possible. The analysis is done in both the context of the ϵ\epsilon-expansion and in the fixed dimension approach. It is pointed out the differences that arise in both of these approaches concerning the gauge dependence.Comment: RevTex, 3 pages, no figures; accepted for publication in PRB; this paper is a short version of cond-mat/990527

    The VLT-FLAMES Tarantula Survey X: Evidence for a bimodal distribution of rotational velocities for the single early B-type stars

    Full text link
    Aims: Projected rotational velocities (\vsini) have been estimated for 334 targets in the VLT-FLAMES Tarantula survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods: Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results: Projected rotational velocities range up to approximately 450 \kms and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having 0≤0\leq\ve≤\leq100\,\kms and the high velocity component having \ve∼250\sim 250\,\kms. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions: The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars. While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations.Comment: to be publisged in A&

    The Kentucky Noisy Monte Carlo Algorithm for Wilson Dynamical Fermions

    Get PDF
    We develop an implementation for a recently proposed Noisy Monte Carlo approach to the simulation of lattice QCD with dynamical fermions by incorporating the full fermion determinant directly. Our algorithm uses a quenched gauge field update with a shifted gauge coupling to minimize fluctuations in the trace log of the Wilson Dirac matrix. The details of tuning the gauge coupling shift as well as results for the distribution of noisy estimators in our implementation are given. We present data for some basic observables from the noisy method, as well as acceptance rate information and discuss potential autocorrelation and sign violation effects. Both the results and the efficiency of the algorithm are compared against those of Hybrid Monte Carlo. PACS Numbers: 12.38.Gc, 11.15.Ha, 02.70.Uu Keywords: Noisy Monte Carlo, Lattice QCD, Determinant, Finite Density, QCDSPComment: 30 pages, 6 figure

    Numerical Study of the S=1S=1 Antiferrromagnetic Spin Chain with Bond Alternation

    Full text link
    We study the S=1S=1 quantum spin chain with bond alternation {\cal H}=\sum _i (1-(-1)^i\delta)\vect{S}_i\cdot \vect{S}_{i+1} by the density matrix renormalization group method recently proposed by Steven R. White (\PRL{69}{3844}{1993}). We find a massless point at δc=0.25±0.01\delta _c =0.25 \pm 0.01. We also find the edge states in the region δ<δc\delta <\delta_c under the open boundary condition, which disappear in the region δ>δc\delta >\delta _{c}. At the massless point, the spin wave velocity vsv_s is 3.66±0.103.66 \pm 0.10 and the central charge cc is 1.0±0.151.0\pm 0.15. Our results indicate that a continuous phase transition occurs at the massless point δ=δc\delta =\delta_c accompanying breaking of the hidden Z2×Z2Z_2\times Z_2 symmetry.Comment: 9 pages and 1 PostScript figure, Revtex 3.0 (Minor corrections in TEX-file format to remove possible compilatory troubles.

    Speeding up finite step-size updating of full QCD on the lattice

    Get PDF
    We propose various improvements of finite step-size updating for full QCD on the lattice that might turn finite step-size updating into a viable alternative to the hybrid Monte Carlo algorithm. These improvements are noise reduction of the noisy estimator of the fermion determinant, unbiased inclusion of the hopping parameter expansion and a multi-level Metropolis scheme. First numerical tests are performed for the 2 dimensional Schwinger model with two flavours of Wilson fermions and for QCD two flavours of Wilson fermions and Schr"odinger functional boundary conditions.Comment: 22 pages, 1 figur

    Exact Ground States in Spin Systems with Orbital Degeneracy

    Full text link
    We present exact ground states in spin models with orbital generacy in one and higher dimensions. A method to obtain the exact ground states of the models when the Hamiltonians are composed of the products of two commutable operators is proposed. For the case of the spin-1/2 model with two-fold degeneracy some exact ground states are given, such as the Valence-Bond (VB), the magnetically ordered, and the orbitally ordered states under particular parameter regimes. We also find the models with the higher spin and degeneracy which have the new types of VB ground states in the spin and the orbital sectors.Comment: 4 pages(JPSJ.sty), 2 figures(EPS), to appear in J. Phys. Soc. Jpn. 68, No.2 (1999) 32

    S(k) for Haldane Gap Antiferromagnets: Large-scale Numerical Results vs. Field Theory and Experiment

    Full text link
    The structure function, S(k), for the s=1, Haldane gap antiferromagnetic chain, is measured accurately using the recent density matrix renormalization group method, with chain-length 100. Excellent agreement with the nonlinear σ\sigma model prediction is obtained, both at k≈πk\approx \pi where a single magnon process dominates and at k≈0k\approx 0 where a two magnon process dominates. We repeat our calculation with crystal field anisotropy chosen to model NENP, obtaining good agreement with both field theory predictions and recent experiments. Correlation lengths, gaps and velocities are determined for both polarizations.Comment: 11 pages, 3 postscript figures included, REVTEX 3.0, UBCTP-93-02
    • …
    corecore