8,319 research outputs found
Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser
This paper summarizes analytical studies and the interpretation of experimental results for the compression and rarefaction waves generated in the cavity of a pulsed CO electric discharge laser. A one-dimensional analysis of acoustic waves is applied to a transversely excited laser. The influences of heating in the cathode fall, heat transfer to the cathode, flow through both the anode and cathode, and bulk heating of the plasma are included. The analysis is used to relate the bulk heating rate to observable features of the pressure and density waves. Data obtained from interferograms and reported elsewhere are used to infer the bulk heating rates in a pulsed CO laser. Results are presented for CO/Ar, CO/N2, and N2 plasmas. Comparison of the data with recent theoretical results for the heating due to electron/ neutral collisions and the anharmonic defect associated with V-V energy transfer shows substantial differences at lower values of total energy deposition. The change of heating with E/N is in fairly good agreement with predicted values
Multiobjective analysis for the design and control of an electromagnetic valve actuator
The electromagnetic valve actuator can deliver much improved fuel efficiency and reduced emissions in spark ignition (SI) engines owing to the potential for variable valve timing when compared with cam-operated, or conventional, variable valve strategies. The possibility exists to reduce pumping losses by throttle-free operation, along with closed-valve engine braking. However, further development is required to make the technology suitable for accept- ance into the mass production market. This paper investigates the application of multiobjective optimization techniques to the conflicting objective functions inherent in the operation of such a device. The techniques are utilized to derive the optimal force–displacement characteristic for the solenoid actuator, along with its controllability and dynamic/steady state performance
Digital Data Recording System (DDRS) operating and maintenance manual
The digital data recording system (DDRS) was designed, fabricated, tested, and delivered. This unit is the interface between the synthetic aperture radar (SAR) and the recording system. The SAR data are formatted in the DDRS for data processing on the ground
Number-of-Particle Fluctuations and Stability of Bose-Condensed Systems
In this paper we show that a normal total number-of-particle fluctuation can
be obtained consistently from the static thermodynamic relation and dynamic
compressibility sum rule. In models using the broken U(1) gauge symmetry, in
order to keep the consistency between statics and dynamics, it is important to
identify the equilibrium state of the system with which the density response
function is calculated, so that the condensate particle number , the
number of thermal depletion particles , and the number of
non-condensate particles can be unambiguously defined. We also show
that the chemical potential determined from the Hugenholtz-Pines theorem should
be consistent with that determined from the equilibrium equation of state. The
anomalous fluctuation of the number of non-condensate particles is an
intrinsic feature of the broken U(1) gauge symmetry. However, this anomalous
fluctuation does not imply the instability of the system. Using the random
phase approximation, which preserves the U(1) gauge symmetry, such an anomalous
fluctuation of the number of non-condensate particles is completely absentComment: 9 pages, submitted to PR
Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes
Cooperative secretion of virulence factors by pathogens can lead to social conflict when cheating mutants exploit collective secretion, but do not contribute to it. If cheats outcompete cooperators within hosts, this can cause loss of virulence. Insect parasitic nematodes are important biocontrol tools that secrete a range of significant virulence factors. Critically, effective nematodes are hard to maintain without live passage, which can lead to virulence attenuation. Using experimental evolution, we tested whether social cheating might explain unstable virulence in the nematode Heterorhabditis floridensis by manipulating relatedness via multiplicity of infection (MOI), and the scale of competition. Passage at high MOI, which should reduce relatedness, led to loss of fitness: virulence and reproductive rate declined together and all eight independent lines suffered premature extinction. As theory predicts, relatedness treatments had more impact under stronger global competition. In contrast, low MOI passage led to more stable virulence and increased reproduction. Moreover, low MOI lineages showed a trade-off between virulence and reproduction, particularly for lines under stronger between-host competition. Overall, this study indicates that evolution of virulence theory is valuable for the culture of biocontrol agents: effective nematodes can be improved and maintained if passage methods mitigate possible social conflicts
Comparison of high-latitude thermospheric meridionalwinds I: optical and radar experimental comparisons
Thermospheric neutral winds at Kiruna, Sweden (67.4°N, 20.4°E) are compared using both direct optical Fabry-Perot Interferometer&nbsp;(FPI) measurements and those derived from European incoherent scatter radar (EISCAT) measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974) and the Meridional Wind Model (MWM) (Miller et al., 1997) application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the Coupled Thermosphere and Ionosphere (CTIM) numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3&nbsp;techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical Horizontal Wind Model (HWM), though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations.<p> <b>Key words.</b> Meteorology and atmospheric dynamics (thermospheric dynamics), Ionosphere (ionosphere-atmosphere interactions, auroral ionosphere
Bose-Einstein condensation in inhomogeneous Josephson arrays
We show that spatial Bose-Einstein condensation of non-interacting bosons
occurs in dimension d < 2 over discrete structures with inhomogeneous topology
and with no need of external confining potentials. Josephson junction arrays
provide a physical realization of this mechanism. The topological origin of the
phenomenon may open the way to the engineering of quantum devices based on
Bose-Einstein condensation. The comb array, which embodies all the relevant
features of this effect, is studied in detail.Comment: 4 pages, 5 figure
- …