1,241 research outputs found

    Metaphors in Abstract Thought

    Get PDF
    The aim of the dissertation was to investigate the Conceptual Metaphor Theory (CMT, Lakoff & Johnson, 1980, 1999).The CMT proposes that abstract concepts are partly structured by concrete concepts through the mechanism of metaphorical mapping. In Chapter 2 we wanted to investigate the role of the vehicle (concrete concept) in the comprehension process of the topic(abstract concept) in a metaphorical sentence, but we found mixed results. In Chapter 3 to Chapter 6 we investigated the role of concrete concepts during conceptual tasks about abstract concepts. Chapter 3 shows that participants’ performance over a similarity decision task (similar or dissimilar colours) was influenced by the distance of presentation (near or far) in congruence with the conceptual metaphor (similar is near and dissimilar is far). Chapter 4 shows that participants’ performance over a categorization task (same category vs. different category) on pictures (animals or vehicles) was influenced by the position of a frame (both pictures in or one out of the frame) in congruence with the conceptual metaphor (same category is in container and different category is out of container). Chapter 5 showed evidence that situational quantity (e.g., 5 bananas) was partly represented by verticality (more is up and less is down) but simple numbers (e.g., 5) not. Chapter 6 could not show evidence that love is partly represented by warmth or closeness. In conclusion, the studies in this thesis partly support the CMT

    Collateral and Debt Maturity Choice. A Signaling Model

    Get PDF
    This paper derives optimal loan policies under asymmetric information where banks offer loan contracts of long and short duration, backed or unbacked with collateral. The main novelty of the paper is that it analyzes a setting in which high quality firms use collateral as a complementary device along with debt maturity to signal their superiority. The least-cost signaling equilibrium depends on the relative costs of the signaling devices, the difference in firm quality and the proportion of good firms in the market. Model simulations suggest a non-monotonic relationship between firm quality and debt maturity, in which high quality firms have both long-term secured debt and short-term secured or non-secured debt.

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

    Detection of Active Mammalian GH31 α-Glucosidases in Health and Disease Using In-Class, Broad-Spectrum Activity-Based Probes

    Get PDF
    The development of small molecule activity-based probes (ABPs) is an evolving and powerful area of chemistry. There is a major need for synthetically accessible and specific ABPs to advance our understanding of enzymes in health and disease. α-Glucosidases are involved in diverse physiological processes including carbohydrate assimilation in the gastrointestinal tract, glycoprotein processing in the endoplasmic reticulum (ER), and intralysosomal glycogen catabolism. Inherited deficiency of the lysosomal acid α-glucosidase (GAA) causes the lysosomal glycogen storage disorder, Pompe disease. Here, we design a synthetic route for fluorescent and biotin-modified ABPs for in vitro and in situ monitoring of α-glucosidases. We show, through mass spectrometry, gel electrophoresis, and X-ray crystallography, that α-glucopyranose configured cyclophellitol aziridines label distinct retaining α-glucosidases including GAA and ER α-glucosidase II, and that this labeling can be tuned by pH. We illustrate a direct diagnostic application in Pompe disease patient cells, and discuss how the probes may be further exploited for diverse applications

    Liking a Sexual Character Affects Willingness to Have Casual Sex:The Moderating Role of Relationship Status and Status Satisfaction

    Get PDF
    The aim of the present study was to investigate individual differences in the influence of the likability of a sexual female main character on women’s willingness to have casual sex with a stranger. Specifically, we studied the moderating role of relationship status (Experiments 1 and 2) and satisfaction with one’s relationship or with being single (Experiment 2). Women (aged 18–30), who were single or in a relationship, watched an erotic scene with a likable or unlikable sexual female main character who had casual sex. In both experiments, women in a relationship were less willing to have casual sex than single women, after they had seen a likable sexual female character. However, an unpredicted effect was found in Experiment 2. After seeing an unlikable sexual female character, women who were dissatisfied with their relationship or with being single were more willing to have casual sex than their satisfied counterparts

    A Specific Activity-Based Probe to Monitor Family GH59 Galactosylceramidase, the Enzyme Deficient in Krabbe Disease

    Get PDF
    Galactosylceramidase (GALC) is the lysosomal β-galactosidase responsible for the hydrolysis of galactosylceramide. Inherited deficiency in GALC causes Krabbe disease, a devastating neurological disorder characterized by accumulation of galactosylceramide and its deacylated counterpart, the toxic sphingoid base galactosylsphingosine (psychosine). We report the design and application of a fluorescently tagged activity-based probe (ABP) for the sensitive and specific labeling of active GALC molecules from various species. The probe consists of a β-galactopyranose-configured cyclophellitol-epoxide core, conferring specificity for GALC, equipped with a BODIPY fluorophore at C6 that allows visualization of active enzyme in cells and tissues. Detection of residual GALC in patient fibroblasts holds great promise for laboratory diagnosis of Krabbe disease. We further describe a procedure for in situ imaging of active GALC in murine brain by intra-cerebroventricular infusion of the ABP. In conclusion, this GALC-specific ABP should find broad applications in diagnosis, drug development, and evaluation of therapy for Krabbe disease

    Glucosylsphingosine Is a Highly Sensitive and Specific Biomarker for Primary Diagnostic and Follow-Up Monitoring in Gaucher Disease in a Non-Jewish, Caucasian Cohort of Gaucher Disease Patients

    Get PDF
    Gaucher disease (GD) is the most common lysosomal storage disorder (LSD). Based on a deficient β-glucocerebrosidase it leads to an accumulation of glucosylceramide. Standard diagnostic procedures include measurement of enzyme activity, genetic testing as well as analysis of chitotriosidase and CCL18/PARC as biomarkers. Even though chitotriosidase is the most well-established biomarker in GD, it is not specific for GD. Furthermore, it may be false negative in a significant percentage of GD patients due to mutation. Additionally, chitotriosidase reflects the changes in the course of the disease belatedly. This further enhances the need for a reliable biomarker, especially for the monitoring of the disease and the impact of potential treatments.Here, we evaluated the sensitivity and specificity of the previously reported biomarker Glucosylsphingosine with regard to different control groups (healthy control vs. GD carriers vs. other LSDs).Only GD patients displayed elevated levels of Glucosylsphingosine higher than 12 ng/ml whereas the comparison controls groups revealed concentrations below the pathological cut-off, verifying the specificity of Glucosylsphingosine as a biomarker for GD. In addition, we evaluated the biomarker before and during enzyme replacement therapy (ERT) in 19 patients, demonstrating a decrease in Glucosylsphingosine over time with the most pronounced reduction within the first 6 months of ERT. Furthermore, our data reveals a correlation between the medical consequence of specific mutations and Glucosylsphingosine.In summary, Glucosylsphingosine is a very promising, reliable and specific biomarker for GD

    Striatal Volume Predicts Level of Video Game Skill Acquisition

    Get PDF
    Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks.United States. Office of Naval Research (grant number N00014-07-1-0903

    Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity

    Get PDF
    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale
    corecore