285 research outputs found

    Small-World Rouse Networks as models of cross-linked polymers

    Full text link
    We use the recently introduced small-world networks (SWN) to model cross-linked polymers, as an extension of the linear Rouse-chain. We study the SWN-dynamics under the influence of external forces. Our focus is on the structurally and thermally averaged SWN stretching, which we determine both numerically and analytically using a psudo-gap ansatz for the SWN-density of states. The SWN stretching is related to the probability of a random-walker to return to its origin on the SWN. We compare our results to the corresponding ones for Cayley trees.Comment: 14 pages, 4 figures. Preprint version, submitted to JC

    Dynamics of Annealed Systems under External Fields: CTRW and the Fractional Fokker-Planck Equations

    Full text link
    We consider the linear response of a system modelled by continuous-time random walks (CTRW) to an external field pulse of rectangular shape. We calculate the corresponding response function explicitely and show that it exhibits aging, i.e. that it is not translationally invariant in the time-domain. This result differs from that of systems which behave according to fractional Fokker-Planck equations

    Relaxation Properties of Small-World Networks

    Full text link
    Recently, Watts and Strogatz introduced the so-called small-world networks in order to describe systems which combine simultaneously properties of regular and of random lattices. In this work we study diffusion processes defined on such structures by considering explicitly the probability for a random walker to be present at the origin. The results are intermediate between the corresponding ones for fractals and for Cayley trees.Comment: 16 pages, 6 figure

    Quantum walk approach to search on fractal structures

    Full text link
    We study continuous-time quantum walks mimicking the quantum search based on Grover's procedure. This allows us to consider structures, that is, databases, with arbitrary topological arrangements of their entries. We show that the topological structure of the database plays a crucial role by analyzing, both analytically and numerically, the transition from the ground to the first excited state of the Hamiltonian associated with different (fractal) structures. Additionally, we use the probability of successfully finding a specific target as another indicator of the importance of the topological structure.Comment: 15 pages, 14 figure

    Survival probability of a particle in a sea of mobile traps: A tale of tails

    Full text link
    We study the long-time tails of the survival probability P(t)P(t) of an AA particle diffusing in dd-dimensional media in the presence of a concentration ρ\rho of traps BB that move sub-diffusively, such that the mean square displacement of each trap grows as tγt^{\gamma} with 0γ10\leq \gamma \leq 1. Starting from a continuous time random walk (CTRW) description of the motion of the particle and of the traps, we derive lower and upper bounds for P(t)P(t) and show that for γ2/(d+2)\gamma \leq 2/(d+2) these bounds coincide asymptotically, thus determining asymptotically exact results. The asymptotic decay law in this regime is exactly that obtained for immobile traps. This means that for sufficiently subdiffusive traps, the moving AA particle sees the traps as essentially immobile, and Lifshitz or trapping tails remain unchanged. For γ>2/(d+2)\gamma > 2/(d+2) and d2d\leq 2 the upper and lower bounds again coincide, leading to a decay law equal to that of a stationary particle. Thus, in this regime the moving traps see the particle as essentially immobile. For d>2d>2, however, the upper and lower bounds in this γ\gamma regime no longer coincide and the decay law for the survival probability of the AA particle remains ambiguous

    Quantum transport on two-dimensional regular graphs

    Get PDF
    We study the quantum-mechanical transport on two-dimensional graphs by means of continuous-time quantum walks and analyse the effect of different boundary conditions (BCs). For periodic BCs in both directions, i.e., for tori, the problem can be treated in a large measure analytically. Some of these results carry over to graphs which obey open boundary conditions (OBCs), such as cylinders or rectangles. Under OBCs the long time transition probabilities (LPs) also display asymmetries for certain graphs, as a function of their particular sizes. Interestingly, these effects do not show up in the marginal distributions, obtained by summing the LPs along one direction.Comment: 22 pages, 11 figure, acceted for publication in J.Phys.

    Mean Field Model of Coagulation and Annihilation Reactions in a Medium of Quenched Traps: Subdiffusion

    Full text link
    We present a mean field model for coagulation (A+AAA+A\to A) and annihilation (A+A0A+A\to 0) reactions on lattices of traps with a distribution of depths reflected in a distribution of mean escape times. The escape time from each trap is exponentially distributed about the mean for that trap, and the distribution of mean escape times is a power law. Even in the absence of reactions, the distribution of particles over sites changes with time as particles are caught in ever deeper traps, that is, the distribution exhibits aging. Our main goal is to explore whether the reactions lead to further (time dependent) changes in this distribution.Comment: 9 pages, 3 figure

    Does strange kinetics imply unusual thermodynamics?

    Full text link
    We introduce a fractional Fokker-Planck equation (FFPE) for Levy flights in the presence of an external field. The equation is derived within the framework of the subordination of random processes which leads to Levy flights. It is shown that the coexistence of anomalous transport and a potential displays a regular exponential relaxation towards the Boltzmann equilibrium distribution. The properties of the Levy-flight FFPE derived here are compared with earlier findings for subdiffusive FFPE. The latter is characterized by a non-exponential Mittag-Leffler relaxation to the Boltzmann distribution. In both cases, which describe strange kinetics, the Boltzmann equilibrium is reached and modifications of the Boltzmann thermodynamics are not required

    The target problem with evanescent subdiffusive traps

    Full text link
    We calculate the survival probability of a stationary target in one dimension surrounded by diffusive or subdiffusive traps of time-dependent density. The survival probability of a target in the presence of traps of constant density is known to go to zero as a stretched exponential whose specific power is determined by the exponent that characterizes the motion of the traps. A density of traps that grows in time always leads to an asymptotically vanishing survival probability. Trap evanescence leads to a survival probability of the target that may be go to zero or to a finite value indicating a probability of eternal survival, depending on the way in which the traps disappear with time

    Dynamics of continuous-time quantum walks in restricted geometries

    Full text link
    We study quantum transport on finite discrete structures and we model the process by means of continuous-time quantum walks. A direct and effective comparison between quantum and classical walks can be attained based on the average displacement of the walker as a function of time. Indeed, a fast growth of the average displacement can be advantageously exploited to build up efficient search algorithms. By means of analytical and numerical investigations, we show that the finiteness and the inhomogeneity of the substrate jointly weaken the quantum walk performance. We further highlight the interplay between the quantum-walk dynamics and the underlying topology by studying the temporal evolution of the transfer probability distribution and the lower bound of long time averages.Comment: 25 pages, 13 figure
    corecore