29 research outputs found
Comparison between the calculated and measured dose distributions for four beams of 6 MeV linac in a human-equivalent phantom
Radiation dose distributions in various parts of the body are of importance in radiotherapy. Also, the percent depth dose at different body depths is an important parameter in radiation therapy applications. Monte Carlo simulation techniques are the most accurate methods for such purposes. Monte Carlo computer calculations of photon spectra and the dose ratios at surfaces and in some internal organs of a human equivalent phantom were performed. In the present paper, dose distributions in different organs during bladder radiotherapy by 6 MeV X-rays were measured using thermoluminescence dosimetry placed at different points in the human-phantom. The phantom was irradiated in exactly the same manner as in actual bladder radiotherapy. Four treatment fields were considered to maximize the dose at the center of the target and minimize it at non-target healthy organs. All experimental setup information was fed to the MCNP-4b code to calculate dose distributions at selected points inside the proposed phantom. Percent depth dose distribution was performed. Also, the absorbed dose as ratios relative to the original beam in the surrounding organs was calculated by MCNP-4b and measured by thermoluminescence dosimetry. Both measured and calculated data were compared. Results indicate good agreement between calculated and measured data inside the phantom. Comparison between MCNP-4b calculations and measurements of depth dose distribution indicated good agreement between both
An In-Depth Examination of the Natural Radiation and Radioactive Dangers Associated with Regularly Used Medicinal Herbs
The specific activity of U-238 and Th-232, as well as K-40 radionuclides, in twenty-nine investigated medicinal herbs used in Egypt has been measured using a high-purity germanium (HP Ge) detector. The measured values ranged from the BDL to 20.71 ± 1.52 with a mean of 7.25 ± 0.54 (Bq kg−1) for uranium-238, from the BDL to 29.35 ± 1.33 with a mean of 7.78 ± 0.633 (Bq kg−1) for thorium-232, and from 172 ± 5.85 to 1181.2 ± 25.5 with a mean of 471.4 ± 11.33 (Bq kg−1) for potassium-40. Individual herbs with the highest activity levels were found to be 20.71 ± 1.52 (Bq kg−1) for uranium-238 (H4, Thyme herb), 29.35 ± 1.33 (Bq kg−1) for thorium-232 (H20, Cinnamon), and 1181.2 ± 25.5 (Bq kg−1) for potassium-40 (H24, Worm-wood). (AACED) Ingestion-related effective doses over the course of a year of uranium-238 and thorium-232, as well as potassium-40 estimated from measured activity concentrations, are 0.002304 ± 0.00009 (minimum), 0.50869 ± 0.0002 (maximum), and 0.0373 ± 0.0004 (average)(mSv/yr). Radium equivalent activity (Raeq), annual gonadal dose equivalent (AGDE), absorbed gamma dose rate (Doutdoor, Dindoor), gamma representative level index (I), annual effective dose (AEDtotal), external and internal hazard index (Hex, Hin), and excess lifetime cancer risk were determined in medicinal plants (ELCR). The radiological hazards assessment revealed that the investigated plant species have natural radioactivity levels that are well within the internationally recommended limit. This is the first time that the natural radioactivity of therapeutic plants has been measured in Egypt. In addition, no artificial radionuclide (for example, 137Cs) was discovered in any of the samples. Therefore, the current findings are intended to serve as the foundation for establishing a standard safety and guideline for using these therapeutic plants in Egypt. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.PNURSP2022R173This work was funded by Princess Nourah bint, Abdulrahman University, Research Supporting Project number (PNURSP2022R173) Princess Nourah bint, Abdulrahman University, Riyadh, Saudi Arabia
Anomalous Water Diffusion in Concrete Based on Neutron Backscattering Measurements
ABSTRACT This work presents a new method based on neutron backscatter measurements to study isothermal water flow and distribution in concretes. Ordinary concrete samples with different percentages of silica fume are used to study the water profiles
Excitation function of proton induced nuclear reaction on strontium: Special relevance to the production of 88Y
Excitation functions were measured by the activation method using stacked-foil technique for the natSr (p,xn)88,87m,g,86m,gY reactions up to 18 MeV. The experimental results were compared with the theoretical data from EMPIRE-3.2 code and TENDL. Integral yields of 88,87m,g,86m,gY were estimated based on the measured cross sections. The optimum energy range for the production of the important isotope 88Y is Ep=16→11 MeV, 88Y yield amounts to about 3 MBq/μAh
DFT Investigation of Structural and Electronic Properties of Modified PZT
Density of states and geometrical structures of modified Lead zirconate titanate are investigated using density functional theory within local density approximation. The electronic properties and bond length variation have been studied in terms of electronic structure and bonding mechanism principles respectively. Hybridization between Ti 3d - O 2p states and ferroelectric distortion have been addressed as a theoretical approach, to rule the improvement of ferroelectric properties of Lead zirconate titanate. The analysis of Ga, Tl modified Lead zirconate titanate were found to diminish the hybridization between Ti 3d - O 2p states, the relaxed behavior lead to the reversal of the known ferroelectric distortion. Y, Ho, Yb and Lu modified Lead zirconate titanate compounds have a tendency to intense the ferroelectric stability, its exhibit higher hybridization between Ti 3d - O 2p states than pure Lead zirconate titanate, also the arrangement of the ions distortions is strongly the same as the more favoured ferroelectric states of Lead zirconate titanate
Neutronic Performance of the VVER-1000 Reactor Using Thorium Fuel with ENDF Library
In this paper, neutronic calculations and the core analysis of the VVER-1000 reactor were performed using MCNP6 code together with both ENDF/B-VII.1 and ENDF/B-VIII libraries. The effect of thorium introduction on the neutronic parameters of the VVER-1000 reactor was discussed. The reference core was initially filled with enriched uranium oxide fuel and then fueled with uranium-thorium fuel. The calculations determine the delayed neutron fraction βeff, the temperature reactivity coefficients, the fuel consumption, and the production of the transuranic elements during reactor operation. βeff and the Doppler coefficient (DC) are found to be in agreement with the design values. It is found that the core loaded with uranium and thorium has lower delayed neutron fraction than the uranium oxide core. The moderator temperature coefficients of the uranium-thorium core are found to be higher than those of the uranium core. Results indicated that thorium has lower production of minor actinides (MAs) and transuranic elements (mainly plutonium isotopes) compared with the relatively large amounts produced from the uranium-based fuel UO2