5,433 research outputs found

    Collisionally Induced Atomic Clock Shifts and Correlations

    Full text link
    We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts and blackbody radiation effects for atomic clock transitions using a density matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Results for a finite temperature 87{}^{87}Sr 1S0{}^1S_0 (F=9/2F = 9/2) atomic clock in a magic wavelength optical lattice are presented.Comment: 11 pages, 9 figures. Physical Review A (in press

    Power densities for two-step gamma-ray transitions from isomeric states

    Full text link
    We have calculated the incident photon power density P_2 for which the two-step induced emission rate from an isomeric nucleus becomes equal to the natural isomeric decay rate. We have analyzed two-step transitions for isomeric nuclei with a half-life greater than 10 min, for which there is an intermediate state of known energy, spin and half-life, for which the intermediate state is connected by a known gamma-ray transition to the isomeric state and to at least another intermediate state, and for which the relative intensities of the transitions to lower states are known. For the isomeric nucleus 166m-Ho, which has a 1200 y isomeric state at 5.98 keV, we have found a value of P_2=6.3 x 10^7 W cm^{-2}, the intermediate state being the 263.8 keV level. We have found power densities P_2 of the order of 10^{10} W cm^{-2} for several other isomeric nuclei.Comment: 9 pages, 1 eps figure, 1 tabl

    Partially incoherent gap solitons in Bose-Einstein condensates

    Full text link
    We construct families of incoherent matter-wave solitons in a repulsive degenerate Bose gas trapped in an optical lattice (OL), i.e., gap solitons, and investigate their stability at zero and finite temperature, using the Hartree-Fock-Bogoliubov equations. The gap solitons are composed of a coherent condensate, and normal and anomalous densities of incoherent vapor co-trapped with the condensate. Both intragap and intergap solitons are constructed, with chemical potentials of the components falling in one or different bandgaps in the OL-induced spectrum. Solitons change gradually with temperature. Families of intragap solitons are completely stable (both in direct simulations, and in terms of eigenvalues of perturbation modes), while the intergap family may have a very small unstable eigenvalue (nevertheless, they feature no instability in direct simulations). Stable higher-order (multi-humped) solitons, and bound complexes of fundamental solitons are found too.Comment: 8 pages, 9 figures. Physical Review A, in pres

    Interferences in the density of two Bose-Einstein condensates consisting of identical or different atoms

    Full text link
    The density of two {\it initially independent} condensates which are allowed to expand and overlap can show interferences as a function of time due to interparticle interaction. Two situations are separately discussed and compared: (1) all atoms are identical and (2) each condensate consists of a different kind of atoms. Illustrative examples are presented.Comment: 12 pages, 3 figure

    Many-body effects on adiabatic passage through Feshbach resonances

    Full text link
    We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms Gamma on sweep rate alpha, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law GammaalphaGamma\propto alpha is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law Gammaalpha1/3Gamma\propto alpha^{1/3} is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.Comment: 9 pages, 9 figure

    Nonlinear adiabatic passage from fermion atoms to boson molecules

    Full text link
    We study the dynamics of an adiabatic sweep through a Feshbach resonance in a quantum gas of fermionic atoms. Analysis of the dynamical equations, supported by mean-field and many-body numerical results, shows that the dependence of the remaining atomic fraction Γ\Gamma on the sweep rate α\alpha varies from exponential Landau-Zener behavior for a single pair of particles to a power-law dependence for large particle number NN. The power-law is linear, Γα\Gamma \propto \alpha, when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and Γα1/3\Gamma \propto \alpha^{1/3} when it is larger. Experimental data agree better with a linear dependence than with an exponential Landau-Zener fit, indicating that many-body effects are significant in the atom-molecule conversion process.Comment: 5 pages, 4 figure
    corecore