44 research outputs found

    Universal mechanism of discontinuity of commensurate-incommensurate transitions in three-dimensional solids: Strain dependence of soliton self-energy

    Full text link
    We show that there exists a universal mechanism of long-range soliton attraction in three-dimensional solids and, therefore, of discontinuity of any commensurate-incommensurate (C-IC) phase transition. This mechanism is due to the strain dependence of the soliton self-energy and specific features of the solid-state elasticity. The role of this mechanism is studied in detail for a class of C-IC transitions where the IC modulation is one-dimensional, the anisotropy in the order parameter space is small, and the symmetry of the systems allows the existence of the Lifshitz invariant. Two other mechanisms of soliton attraction are operative here but the universal mechanism considered in this paper is found to be the most important one in some cases. Comparison with the most extensively studied C-IC transition in K2SeO4\rm K_2SeO_4 shows that the experimentally observed thermal anomalies can be understood as a result of the smearing of the theoretically predicted discontinuous transition.Comment: 8 pages (extended version, title changed

    Unconventional magnetic transition and transport behavior in Na0.75CoO2

    Full text link
    Here we report an unconventional magnetic and transport phenomenon in a layered cobalt oxide, NaxCoO2. Only for x = 0.75, a magnetic transition of the second order was clearly detected at Tm ~ 22 K where an apparent specific-heat jump, an onset of extremely small spontaneous magnetization, and a kink in resistivity came in. Moreover large positive magnetoresistance effect was observed below Tm. These features of the transition strongly indicate the appearance of an unusual electronic state that may be attributed to the strongly-correlated electrons in Na0.75CoO2.Comment: 5 pages, 6 figures, to appear in Phys. Rev.

    Nuclear magnetic relaxation and superfluid density in Fe-pnictide superconductors: An anisotropic \pm s-wave scenario

    Full text link
    We discuss the nuclear magnetic relaxation rate and the superfluid density with the use of the effective five-band model by Kuroki et al. [Phys. Rev. Lett. 101, 087004 (2008)] in Fe-based superconductors. We show that a fully-gapped anisotropic \pm s-wave superconductivity consistently explains experimental observations. In our phenomenological model, the gaps are assumed to be anisotropic on the electron-like \beta Fermi surfaces around the M point, where the maximum of the anisotropic gap is about four times larger than the minimum.Comment: 10 pages, 8 figures; Submitted versio
    corecore